

XML-based Method and Tool for Handling Variant Requirements in Domain
Models

Stan Jarzabek and Hongyu Zhang

Department of Computer Science, School of Computing,
National University of Singapore

Lower Kent Ridge Road, Singapore 117543
{stan, zhanghy}@comp.nus.edu.sg

Abstract

A domain model describes common and variant
requirements for a system family. UML notations used in
requirements analysis and software modeling can be
extended with “variation points” to cater for variant
requirements. However, UML models for a large single
system are already complicated enough. With variants -
UML domain models soon become too complicated to be
useful. The main reasons are the explosion of possible
variant combinations, complex dependencies among
variants and inability to trace variants from a domain
model down to the requirements for a specific system,
member of a family. We believe that the above mentioned
problems cannot be solved at the domain model
description level alone. In the paper, we propose a novel
solution based on a tool that interprets and manipulates
domain models to provide analysts with customized,
simple domain views. We describe a variant configuration
language that allows us to instrument domain models with
variation points and record variant dependencies. An
interpreter of this language produces customized views of
a domain model, helping analysts understand and reuse
software models. We describe the concept of our
approach and its simple implementation based on XML
and XMI technologies.

1. Introduction
Variant requirements arise naturally during analysis of

a system family (also called a Product Line). While
having much in common, members of a family also differ
in functional and non-functional requirements, design
decisions, runtime architectures, platforms and other
characteristics. The subject of domain analysis is
modeling common and variant requirements across family
members. Implicit variants also arise in traditional
analysis of single system requirements. Goal-Oriented
requirement analysis method [12] calls for explicit
representation of early decisions related to functional and
non-functional requirements. These decisions affect each

other and without proper analysis model, it is easy to
overlook the impact of various decisions on the whole
system. From Goal-Oriented perspective, at the initial
development stage the system requirements space is
characterized by many inter-dependent variants. Modeling
a web of inter-connected goals and decisions is analogous
to domain modeling. Careful analysis of goals, decisions
and their outcomes gradually narrows down the space of
potential requirements. This process is analogous to
selection of variant requirements from a domain model in
order to specify requirements for a specific member of a
system family. Having said that, we shall anchor our
further discussion on issues arising in domain modeling
for system families. Figure 1 highlights a system family
approach to software development.

domain analysis
generic architecture for a

system family

requirements
for system X customization

customized
system X

analysis

dom
ain engineering

U
S
E
R
S

evolution

domain model

system
 engineering

common and
variant

requirements

Figure 1. Domain and system engineering

Domain engineering delivers software assets that can
be reused during analysis, design and implementation of
family members. Major reusable assets include a domain
model and generic architecture for a system family. A
generic architecture defines an overall architecture for
family members and provides implementation of both
common and variant requirements in an adaptable form.
We build systems by reusing a domain model and generic
architecture. A domain model describes the scope of

functionality (both common and variant requirements) that
have been implemented into a generic architecture.
Domain engineering artifacts evolve based on the
feedback from system engineering. In practice, scoping of
a system family is done before detailed domain analysis
and design [7]. During scoping, we identify types of
variants that are worth reusing.

Feature models [10] have been used in domain analysis
to depict mandatory and variant requirements. Feature
models must be complemented with other notations, for
example UML, to enhance the meaning of domain
concepts. Notations traditionally used in requirement
analysis can be extended with the concept of a “variation
point” [8] to make them useful in domain modeling. In
our early work, we extended notations of DFD, ER and
STD with variants [4].

Modeling variants adds an extra level of complexity to
domain analysis, otherwise similar to requirement analysis
for a single system. Tracing multiple occurrences of the
same variant in different domain model views and
understanding how mutually dependent variants affect
each other is a major challenge in domain engineering.
While each step in modeling variants may be simple, as
the volume of information grows, domain models become
notoriously difficult to understand. The main proble ms are
the explosion of possible variant combinations, complex
dependencies among variants and inability to trace
variants from a domain model down to requirement
specifications for a specific member of a system family.
The impact of variants on domain model views becomes
unclear, undermining the very purpose of domain
modeling.

Current general-purpose (i.e., domain-independent)
methods for domain modeling are based on descriptive
methods. We believe that the above mentioned problems
cannot be solved at the domain model description level
alone. Therefore, we included into a domain model an
active component that helps analysts in domain model
interpretation and manipulation. In our approach, a
descriptive part of the domain model includes a set of
default domain views, feature diagrams that describe
variants , and customization scripts that describe variants
in respect to defaults. Default domain views describe a
typical system in a domain, expressed in UML notations.
Domain defaults are the starting point for understanding
the scope of a system family, i.e., the range of systems in
a domain we wish to consider. Customization scripts
specify variants as deltas in respect to domain defaults. A
customization script contains commands that add or delete
required variants to/from domain defaults. Our solution
also includes a flexible variant configuration tool (FVC
for short) as an integral part of a domain model. FVC
helps analysts understand and manipulate the domain
model descriptions. FVC is an interpreter of customization
scripts. Based on selected variants, FVC promptly
provides analysts with customized views of a domain

model (i.e., requirement specifications for a system that
meets specific variants). The FVC helps analysts explore
domain defaults and variants, trace dependencies among
variants , etc., enhancing understanding of a domain
model. Customization scripts as well as defaults can be
easily modified, providing flexibility required during
customization and evolution of the domain model.

Our initial approach to handling variants in a domain
model was based on Bassett’s frames [1]. Frame method
and tools have an excellent record in industrial
applications as an effective way to handle variants in
reusable software. In our domain engineering projects, we
have applied frames to build generic architecture for
system families. We also conducted initial experiments to
apply frames in domain models . Recently, we designed a
variant configuration language, called XVCL [17], which
implements essential frame concepts in XML. In this
paper, we describe how we applied XVCL to handle
variants in UML domain models represented as XMI [13]
documents. We chose XMI, as modeling tools such as
Rational Rose adopt XMI standards as a common,
exchangeable representation for software models. In this
solution, an FVC is an XVCL interpreter implemented on
top of JAXP [15], an open framework for parsing XML
documents. The reader should notice that the very concept
of our approach to supporting domain modeling is not
limited to XML, JAXP or XMI.

In the remaining part of the paper, we describe our
solution, illustrating it with examples from our domain
engineering project in the Computer Aided Dispatch
(CAD) domain.

2. Related work
System family approach has emerged as one of the

most promising trends to improve software productivity
and quality. In Feature-Oriented Domain Analysis
(FODA) [10] mandatory and variant requirements (called
features) are depicted in the graphical form as trees. By
traversing the feature trees, we can find out which variants
have been anticipated during domain analysis. A design
space, a multidimensional space of design choices, is yet
another approach to describe variant requirements [3].
Unlike feature diagrams, design spaces do not show
variant types (e.g., optional, alternative and or-
relationship) or depict structural relationship among
variant requirements.

UML notations may be extended with “variation
points” to cater for variant requirements [8]. A generic
software model (analysis component) is customized by
attaching one or several variants to its variation points.

In analogical domain analysis [11], one attempts to
build abstract models for problems that recur in different
application domains. Abstract models are then instantiated
for reuse by injecting domain-specific variants into them.
Domain Specific Languages (DSL) and application
generation techniques provide a powerful method to deal

with variants in system families [2]. A DSL allows one to
specify variants in application domain terms . Variant
specifications in DSL guide generation actions that
produce a custom program that meets required variants. In
contrast to the above approaches, the method described in
this paper is domain-independent. We concentrate on a
problem of how variants affect domain views expressed in
commonly used notations such as UML. Unlike DSLs, our
variant specification language XVCL carries no semantics
of a domain. Our tool uses simple adaptation and
composition rules, rather than generation techniques, to
produce customized domain model views from generic
model components . We described the follow up
techniques for handling variants in system family
architectures in other publications [5,9]. The reader may
also refer to [6] for a detailed comparative study of
various approaches to handling variants in system
families.

3. CAD domain overview
We shall use a domain of Computer Aided Dispatch

(CAD) to illustrate our approach. CAD systems are used
by police, fire & rescue, health service, port operations
and others. Figure 2 depicts a basic operational scenario
and roles in a CAD system for Police.

incident!

Call Taker

Dispatcher

Task Manager Police Unit

monitor

assign task to

phone
call

Incident info

handle
incident

Situation
display Network

Figure 2. A basic operational scenario in CAD
system for Police

A Call Taker receives information about an incident
and informs a Dispatcher about the incident. The
Dispatcher examines the Situation Display that shows a
map of the area where the incident happened. Then, the
Dispatcher assigns a task of handling the incident to a
Police Unit, for example, this might be a police car that is
closest to the place of an incident. The Police Unit
approaches the place of incident and handles the problem.
The Police Unit informs the Task Manager about the
progress of action. The Task Manager monitors the
situation and at the end - closes the task.

At the basic operational level, all CAD systems are
similar - basically, they support the dispatch of units to
handle incidents. However, there are also differences
across CAD systems. The specific context of the operation
results in many variations on the basic operational theme.

Here are some of the variant requirements in CAD
domain:
1. Call Taker and Dispatcher roles (referred to as

CT-DISP variant). In some CAD systems, Call Taker
and Dispatcher roles are separated (played by two
different people), while in other CAD systems the Call
Taker and Dispatcher roles are played by the same
person. The CT-DISP variant has impact on system
functionalities. For example, in the former case, the
Call Taker needs to inform Dispatcher of the newly
created task, but in the latter case, once the Call Taker
creates a task, she/he can straightway dispatch
resources (e.g., Police Units) for this new task.

2. Validation of caller and task information differs
across CAD systems. In some CAD systems, a basic
validation check (i.e., checking the completeness of
the Caller and Task info) is sufficient; in other CAD
systems, validation includes duplicate task checking,
VIP place checking, etc.; in yet other CAD systems,
no validation is required at all.

Figure 3 shows an excerpt from the CAD feature
diagram [10].

Figure 3. CAD feature model

The legend in Figure 3 explains notations (we use
extensions described in [6]). Mandatory requirements
appear in all the instances of a parent concept. Variant
requirements only appear in some of the instances of the
parent concept. Variant requirements are further qualified
as optional, alternative and or-requirements. An
alternative describes one-of-many requirements. For
example, the “Call Taker and Dispatcher roles”
requirement described above has two alternative variants:
“Separated” and “Merged”. An or-requirement describes
any-of-many requirements. For example, the optional
“Validation” requirement has two or-variants: “Basic
Validation” and “Advanced Validation”, which means

that the “Validation” requirement can be “Basic
Validation”, “Advanced Validation”, or both or neither of
them.

4. XVCL: an XML-based Variant
Configuration Language

To address variants in a domain model, we designed an
XML-based Variant Configuration Language (XVCL for
short), a simple markup language based on XML
conventions [17]. We use XVCL to organize domain
knowledge and to instrument domain defaults with
variants. Table 1 lists some of the major XVCL
commands. We use term x-frame to refer to domain
defaults instrumented with variants marked as XVCL
commands. An x-frame can be processed by the XVCL
interpreter (i.e., the XML implementation of the FVC
tool).

XVCL Command Description
<X-FRAME
name=“name”>
</X-FRAME>

Denotes an x-frame.

<DECLARATION>
</DECLARATION>

Here global variables and
settings are declared.

<BODY>
</BODY>

Domain defaults
instrumented with XVCL
customization commands
are defined in the body
section of an x-frame.

<COPY x-frame=“x-
frame” >
 customization commands
</COPY>

Includes a copy of the
specified x-frame after
applying customization
commands inside the x-
frame

<INSERT-BEFORE
name=“breakpoint”>
</INSERT-BEFORE>
<INSERT
name=“breakpoint”>
</INSERT>
<INSERT-AFTER name=
“breakpoint”>
</INSERT-AFTER>

Allows insertions of
fragments of information
at the breakpoint. The
inserted content can be
placed before, after the
breakpoint, or replace the
existing content at the
breakpoint.

<BREAK
name=“breakpoint”>
</BREAK>

Specifies a breakpoint in
an x-frame body, where
customizations may occur.

<SET name=“varname”
value=“varvalue”>
</SET >

Declares an XVCL
variable varame with
value varvalue.

<VAR name=“varname ”/> Denotes an XVCL
variable varname.

<SELECT
name=“variable”>
<OPTION value=“value”>
</OPTION>
<OTHERWISE>

Selects one of many
customization options
based on the value of a
variable.

</OTHERWISE>
</SELECT>

Table 1. A list of XVCL commands as XML tags

In the rest of the paper, we will show how we apply
XVCL in domain modeling, using examples of use cases
and workflows in CAD domain.

5. Modeling use cases in CAD domain

5.1. Applying UML extension mechanism

Use cases differ in many details across members of a
CAD system family. We can model use case variants with
<<extend>> and <<include>> stereotypes [14]. Figure 4
shows the Create Task use case.

Dispatch Task

Get Caller Info Get Task Info Report Error

Advanced Validation

Basic Validation

Inform Dispatcher

CreateTask

(CT-DISP)

<<extend>>

<<include>>
<<include>>

<<include>>

(VALIDATION)

<<extend>>

(VALIDATION)

<<extend>>
(CT-DISP)

<<extend>>

extension points
{CT-DISP, VALIDATION}

Figure 4. Create Task use case diagram

Create Task use case allows a Call Taker to create a
task for an incident reported by an emergency caller. We
have identified two variation points in Create Task ,
namely {CT-DISP} (Call Taker and Dispatcher roles) and
{VALIDATION}. The <<extend>> stereotype indicates
the use cases describing variant behavior associated with
variation points (e.g., Dispatch Task and Basic
Validation). The <<include>> stereotype indicates use
cases that may be reused by other use cases (e.g., Get
Caller Info).

A use case diagram is often complemented by
description such as the one shown in Figure 5. Parameter
RESPONSTIME defines required response time.
1. Introduction
Create Task allows a Call Taker to create a task for an
incident reported by an emergency caller.
2. Flow of events
 An emergency call is received
 Call Taker login
 Include Get Task Info use case

 Include Get Caller Info use case
 (extension point {VALIDATION} here)
 If validation failed then Include Report Error use case
and abort the session.
 Create a new task
 (extension point {CT-DISP} here)
 Call Taker logout
3. Special Requirement
Call Taker should respond to the emergency call within
“RESPONSETIME”.

Figure 5. CreateTask use case description

The CreateTask use case described above is rather
small – it only includes two variation points. As the
volume of information grows, and more variants and
variant dependencies are identified, the models get
complicated and become difficult to understand. For
example, if two more variation points within CreateTask
use case are identified, assuming each variation point has
two possible values, there will be four more extension use
cases. This will bring the total number of variant
combinations up to 24. The exponential explosion of
possible variant combination makes the manual
customization (specialization) of use case model difficult.
In addition, the impact of variants is not limited to use
cases but spreads over other domain model views.

5.2. Applying XVCL

XVCL and its interpreter help us alleviate the above
mentioned problems. Based on selected variants and x-
framed domain defaults, XVCL interpreter produces the
customized use case model for a specific system. System
analysts need only understand the customized models
she/he is interested at a given moment without having to
examine the entire domain model space.

Figure 6 shows the Create Task use case description
instrumented for flexibility with XVCL commands. The
<X-FRAME> tag denotes the x-frame for Create Task use
case description. In <DECLARATION> section, the
XVCL variable RESPONSTIME is defined with default
value of “30 secs”. The contents of the x-frame is
encapsulated in the <body> section. The <COPY>
command indicates the <<include>> relationship. When
XVCL interpreter encounters the <COPY> command, it
will customize and include a copy of the specified x-frame
(e.g., Get_Task_Info.uc) into this x-frame. The <BREAK>
command indicates the variation point where additional
customizations that cater for unexpected variants may
occur. In this example, the <BREAK> command indicates
the variation point brought up by the optional variant
requirement VALIDATION. Use case segments that are
related to VALIDATION variant may be <INSERT>ed
into/after/before this variation point during customization.
The <SELECT> command is used to indicate the
variation point where anticipated customization will

occur. In this example, the customization of CT -DISP
variant is denoted by the <SELECT> command.
<X-FRAME name=“CreateTask_description.uc”>
<DECLARATION>
 <SET name=“RESPONSETIME” value=“30 secs”/>
</DECLARATION>
<BODY>
1. Introduction
Create Task allows a Call Taker to create a task for an
incident reported by an emergency caller.
2. Flow of events
 An emergency call is received
 Call Taker login
 <COPY x-frame=“Get_Task_Info.uc” />
 <COPY x-frame=“Get_Calle_Info.uc”/>
 <BREAK name=“VALIDATION”/>
 If validation failed then <copy x-frame=
 “Report_Error.uc”/> and abort the session.
 Create a new task
 <SELECT name=“CT-DISP”/>
 <OPTION value=“SEPARATED”>
 <COPY x-frame=“Inform_Dispatcher.uc”/>
 </OPTION>
 <OPTION value=“MERGED”>
 <COPY x-frame=“Dispatch_Task.uc”/>
 </OPTION>
 Call Taker logout
3. Special Requirement
Call Taker should respond to the emergency call within
<var name=“RESPONSETIME”/>.
</BODY>
</X-FRAME>

Figure 6. The x-frame for Create Task use case
description

We wish to use the same approach that we applied to
use case description to instrument use case diagrams for
flexibility, as well. To achieve this, we convert UML use
case diagrams into equivalent textual representation and
instrument the text with XVCL commands for flexibility.
We can then perform the same kind of adaptation on
textual use case diagram as we have done on use case
description. After customizations, we convert the text
back to diagrams.

To illustrate this technique, we use an XMI (XML
Metadata Interchange) tool Unisys Rose/XMI to convert
the UML diagrams to equivalent textual representation in
XML. XMI [13] is a new OMG standard that combines
UML and XML and enables the exchange of UML
models over the Internet. XMI supports the round-trip
transformation of UML models from diagrams to an XML
file without loss of information.

Figure 7 shows an x-frame for Create Task use case
diagram depicted in Figure 4. To accommodate the
“CT-DISP” variant, we instrument the use case with
<SELECT> command, which indicates the places where

the anticipated customizations will occur. The <BREAK>
command is used to indicate possible customization that
may occur due to the VALIDATION variant.
<X-FRAME name=“CreateTask_diagram.uc”>
<BODY>

<XMI xmi.version = '1.0'>
 <XMI.header> // XMI Header Info
 <XMI.metamodel xmi.name = 'UML' xmi.version = '1.1'/>
 </XMI.header>

 <XMI.content> //XMI Content
 …
<SELECT name=“CT-DISP”>
<OPTION value=“SEPARATED”>
 // Definition of “Inform Dispatcher” Use Case Element
 <Behavioral_Elements.Use_Cases.UseCase xmi.id=“UC_INFODISP “>
 <Foundation.Core.ModelElement.name>Inform Dispatcher
 </Foundation.Core.ModelElement.name>
 <Behavioral_Elements.Use_Cases.UseCase.extensionPoint />
 </Behavioral_Elements.Use_Cases.UseCase>
 …
</OPTION>
<OPTION value=“MERGED”>
 // Definition of “Dispatch Task” Use Case Element
<Behavioral_Elements.Use_Cases.UseCase xmi.id=“UC_DISPTASK “>
 <Foundation.Core.ModelElement.name>Dispatch Task
 </Foundation.Core.ModelElement.name>
 <Behavioral_Elements.Use_Cases.UseCase.extensionPoint />
 </Behavioral_Elements.Use_Cases.UseCase>

 …
</OPTION>
</SELECT>

<BREAK name=“VALIDATION”/>
 …
</XMI.content>
</XMI>
</BODY>
</X-FRAME>
Figure 7. x-frame for Create Task use case
diagram

A customization script specifies how to adapt an x-
frame to accommodate variants. During customization, the
XVCL interpreter reads an x-frame and customizes it
according to the instructions. Figure 8 shows a
customization script that adapts the generic CreateTask x-
frame to accommodate the “separated Call Taker and
Dispatcher roles” and the “basic validation” variants.
<customization>
 <SET name=“CT -DISP” value=“SEPARATED”/>
 <COPY x-frame=“Create_Task_description.uc” />
 <INSERT name=“VALIDATION”>
 Perform basic validation checking
 </INSERT>
 </COPY>
 <COPY x-frame=“Create_Task_diagram_.uc” />
 <INSERT name=“VALIDATION”>
 // Definition of “Basic Validation” Use Case Element
 <Behavioral_Elements.Use_Cases.UseCase
 xmi.id=“UC_VALIDATION “>
 <Foundation.Core.ModelElement.name >Basic Validation
 </Foundation.Core.ModelElement.name>

 <Behavioral_Elements.Use_Cases.UseCase.extensionPoint />
 …
 </Behavioral_Elements.Use_Cases.UseCase>
 </INSERT>
 </COPY>
</customization>
Figure 8. A customization script

Figure 9 shows the customized Create Task use case
description. Customized textual use case diagram in XML
can be converted back to UML use case diagram by using
the Unisys Rose/XMI tool. Figure 10 shows the
customized Create Task use case diagram in UML.
1. Introduction
Create Task allows a Call Taker to create a task for an
incident reported by an emergency caller.
2. Flow of events
 An emergency call is received
 Call Taker login
 (content of Get Task Info use case)
 (content of Get Caller Info use case)
 Perform basic validation checking
 If validation failed then (content of Report Error use
case) and abort the session.
 Create a new task
 (content of Inform Dispatcher use case)
 Call Taker logout
3. Special Requirement
Call Taker should respond to the call within “30 secs”.
Figure 9. A customized Create Task use case

Get Caller Info Get Task Info Report Error

Basic Validation

Inform Dispatcher

CreateTask

<<include>>
<<include>>

<<include>>

(VALIDATION)

<<extend>>
(CT-DISP)

<<extend>>

extension points
{CT-DISP, VALIDATION}

Figure 10. A customized Create Task use case

6. Flexible workflows
To handle variants in workflows, we extended activity

diagram with variation points to model alternative and
optional flows of activities. Figure 11 depicts the Create

Task workflow with CT-DISP and VALIDATION
variants.

The shaded diamond is a meta-symbol that marks the
variation point. It denotes a decision related to Call Taker
and Dispatcher roles. In the diagram, the shaded diamond
is stereotyped to become an <<alternative>> decision,
whereby one of the paths from the decision point will be
included in the customized diagram.

Call Taker
Login

Receive an emergency call
Get Task Info Get Caller Info

Basic
Validation

<<optional>>

Create Task

[Validation Succeed]

Report Error

[Validation Fail]

Dispatch Task

CT-DISP
<<Alternative>>

[Call Taker and Dispatcher roles are merged]

Inform
Dispatcher

[Call Taker and Dispatcher roles are separated]

Call Taker
Logout

Advanced
Validation

<<optional>>

Figure 11. Create Task workflow with variation
points

Call Taker
Login

Receive an emergency call
Get Task Info Get Caller Info

Basic
Validation

<<optional>>

Create Task

[Validation Succeed]

Report Error

[Validation Fail]

Inform
Dispatcher

Call Taker
Logout

Figure 12. A customized Create Task workflow

We use the same approach to instrument workflow
diagrams for flexibility as we applied to use cases
diagrams. With an XMI tool, we convert workflow

diagrams into equivalent XML representation. Then, we
create an x-frame by instrumenting the XML document
with XVCL commands. We can then perform the same
kind of customizations as we did for use cases. Finally, we
convert the customized XML document back to UML
activity diagrams.

The x-frame for Create Task workflow contains
<SELECT> and <BREAK> commands to accommodate
the CT-DISP and VALIDATION variants, respectively.
Both the workflow x-frame and customization script are
similar to x-frames and customization scripts for use cases
and we do not show them here to conserve the space.
Figure 12 depicts the customized Create Task workflow.

7. Analysis of Results

In sections above, we described the basic technique to
handle variants in domain models. Our technique is easy
to grasp when we deal with small number of defaults and
variants. But in reality, analysts deal with large spaces of
requirements, involving many defaults and variants. By
now, hopefully we managed to get the reader interested in
our approach, but no doubt the reader will remain
unconvinced unless we show that the method has a
potential to scale up. In this section, we shall explain how
we organize large volumes of domain information,
describe the scope of our experimentation, identify
weaknesses of our solution so far and discuss future work.

We organize domain knowledge around the feature
diagram such as the one shown in Figure 3. We extended
feature diagrams to provide explicit mappings between
variants and customization scripts. This new structure is a
form of a decision model [16] that we call a
Customization Decision Tree (CDT). In our previous
domain engineering projects [5], we introduced a CDT to
aid in understanding a generic architecture for a system
family. Here, we apply a similar idea to a domain model.
By inspecting a customization script for a given variant,
we can find out which domain defaults must be
customized to meet the variant and how to do
customization. Having selected variants, we synthesize
relevant scripts to produce a consolidated customization
script. When synthesizing inter-dependent variants,
analyst must modify relevant customization scripts by
hand. To minimize the extent of manual work, we pre -
define consolidated customization scripts for typical
combinations of inter-dependent variants. The XVCL
interpreter selects relevant x-frames, applies
customizations described in the consolidated
customization script and outputs customized domain
model views such as use cases or workflows.

We applied the above domain modeling technique in
two projects involving Facility Reservation (FR) and
Computer Aided Dispatch (CAD) system domains. We
experimented thoroughly only with use case and
workflow notations. In FR domain, our experimentation
covered all the major functions and over 50 variants

displaying a range of mutual dependencies. In CAD
domain, we modeled functions related to Call Taker and
Dispatcher roles with 20 variants.

We believe our approach has a potential to reduce the
complexity of a domain model and offers tangible
advantages over purely descriptive domain modeling
methods. At the same time, our approach and the scope of
experimentation have the following limitations that we
shall address in the future work:
Experiment on a larger scale

We have only experimented with selected views of a
domain model and on a medium-size scale. We plan to
cover a wider spectrum of modeling notations and
experiments on a larger scale in future.
Address complex requirement dependencies

So far, we have been dealing with relatively simple
class of functional variant dependencies. We yet have to
extend research to non-functional variants. Also, other
domains may give rise to different types of dependencies
(such as time-based dependencies) that will require
specialized approach.
Extend and integrate the proposed method with the
customization of the generic architecture

The proposed solution offers the opportunity to use one
technique throughout the domain engineering and the
system engineering phases. We can extend and integrate
the method with the customization of the generic
architecture and the program code to cover the whole
software development life cycle. We conducted initial
experiments in the CAD domain and obtained
encouraging results.

8. Conclusions
As the volume of information grows, domain models

become notoriously difficult to understand. The main
problems are in explosion of possible variant
combinations, complex dependencies among variants and
inability to trace variants from a domain model down to
requirement specifications for a specific member of a
system family. In this paper, we proposed a new approach
to handle variants in a domain model. The main idea of
our solution is to define default domain model views and
provide a semi-automatic way to modify and extend these
defaults. We proposed a flexible variant configuration
component (FVC for short) as an integral part of a domain
model. The role of FVC is to help analysts in
interpretation and manipulation of domain variants. In the
paper, we described a simple implementation of the above
concepts using XML and XMI technologies.

Acknowledgments
The XVCL and XML-based tool for model

customization were inspired by Bassett’s frames. Thanks
are due to NUS students Soe Myat Swe who implemented
frames in XML and Ong Wai Chung who applied frames
to facility reservation system models. This work was

supported by project NSTB/172/4/5-9V1 funded under the
Singapore-Ontario Joint Research Programme and by
NUS Research Grant R-252-000-066.

References
[1] Bassett, P. Framing Software Reuse - Lessons from Real
World, Yourdon Press, Prentice Hall, 1997
[2] Batory, D., Chen, G., Robertson, E. and Wang, T. “Design
Wizards and Visual Programming Environments for GenVoca
Generators,” IEEE Trans. on Software Engineering, Vol. 26, No.
5, May 2000, pp. 441-452

[3] Baum, L., Becker, M., Geyer, L. and Molter, G. “Mapping
Requirements to Reusable Components using Design Spaces”,
Proc. Int’l Conf. on Requirements Engineering, Schaumburg,
Illinois, USA, June 2000

[4] Cheong, Y.C. and Jarzabek, S. “Modeling Variant User
Requirements in Domain Engineering for Reuse”, Information
Modeling and Knowledge Bases , Eds. Hannu Jaakkola, Hannu
Kangassalo and Eiji Kawaguchi, IOS Press, Netherlands, 1998
[5] Cheong, Y.C. and Jarzabek, S. “Frame-based Method for
Customizing Generic Software Architectures”, Proc. Symposium
on Software Reusability, Los Angeles, May 1999

[6] Czarnecki, K. and Eisenecker, U. Generative Programming:
Methods, Tools, and Applications, Addison-Wesley, 2000
[7] Debaud, J.M. and Schmid, K. “A Systematic Approach to
Derive the Scope of Software Product Lines”, Int. Conf. on
Software Engineering, Los Angeles, May 1999
[8] Jacobson, I. M. Griss and P. Jonsson Software Reuse
Architecture, Process and Organization for Business Success,
Addison-Wesley, 1997

[9] Jarzabek, S. and R. Seviora “Engineering components for
ease of customization and evolution,” IEE Proceedings -
Software, Vol. 147, No. 6, December 2000, pp. 237-248, a
special issue on Component-based Software Engineering
[10] Kang, K et al. “Feature-Oriented Domain Analysis (FODA)
Feasibility Study”, Technical Report, CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, Nov. 1990
[11] Maiden, N. and Sutcliffe “Exploiting Reusable
Specifications through Analogy,” CACM, Vo. 34, No. 4, April
1992, pp. 55-64

[12] Mylopoulos, J., Chung, L. and Yu “From Object -Oriented
to Goal-Oriented Requirements Analysis”, CACM, January
1999/Vol. 42, No. 1, pp.31-37
[13] OMG, XML Metadata Interchange (XMI) 1.1 RTF, OMG
Document ad/99-10-02, 25 October 1999
[14] Rumbaugh, J., Jacobson, I. and Booch, G. The Unified
Modeling Language, Reference Malnual, Addison-Wesley, 1999
[15] Sun Microsystems, Inc. Java API for XML Processing v1.1,
December 15, 2000

[16] Weiss, D.and Lai, R. Software Product Line
Engineering, Addison-Wesley Longman, 1999
[17] Wong, T.W., Jarzabek, S., Soe, M.S., Shen, R. and Zhang,
H.Y. “XML Implementation of Frame Processor,” Symposium
on Software Reusability, SSR’01, Toronto, Canada, May 2001,
pp. 164-172

