
© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

UDDI Programmer’s API
Specification

 September 6, 2000

SEPTEMBER 6, 2000 PAGE 2

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

Contents

CONTENTS..2

INTRODUCTION..4

DOCUMENT OVERVIEW ...4
WHAT IS THIS UDDI ANYWAY? ..4

Compatible registries..4
What are tModels?..5

CLASSIFICATION AND IDENTIFICATION INFORMATION ...6

DESIGN & ARCHITECTURE...7

DESIGN PRINCIPLES...7
SECURITY..7
VERSIONING ..7
SOAP MESSAGING ...8
XML CONVENTIONS ...8
ERROR HANDLING...8
WHITE SPACE..8
XML ENCODING...8

API REFERENCE ...10

THREE QUERY PATTERNS...11
The browse pattern ...11
The drill-down pattern..12
The invocation pattern..12

INQUIRY API FUNCTIONS ..13
find_binding..14
find_business ..16
find_service...18
find_tModel...20
get_bindingDetail ...21
get_businessDetail..22
get_businessDetailExt...23
get_serviceDetail ..24
get_tModelDetail ..25

PUBLISHING API FUNCTIONS...26
Special considerations around categorization ..27
delete_binding ..27
delete_business...29
delete_service ...30
delete_tModel ...31
discard_authToken ...33
get_authToken ..34
get_registeredInfo...35
save_binding...36
save_business ...38
save_service..41
save_tModel..42

APPENDIX A: ERROR CODE REFERENCE...44

Error Codes..44
dispositionReport overview...45

SEPTEMBER 6, 2000 PAGE 3

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

APPENDIX B: SOAP USAGE DETAILS...47
Support for SOAPAction...47
Support for SOAP Actor ...47
Support for SOAP encoding..47
Support for SOAP Fault..47
Support for SOAP Headers...47
Document encoding conventions – default namespace support ..47
UTF-8 to Unicode: SOAP listener behavior...48

APPENDIX C: XML USAGE DETAILS...49

USE OF MULTIPLE LANGUAGES IN THE DESCRIPTION ELEMENTS...49
Valid Language Codes..49
Default Language Codes ..49
ISSUE for Validation: XML namespace declaration ..49

SUPPORT FOR XML ENCODING...50

APPENDIX D: SECURITY MODEL IN THE PUBLISHERS API..51

ACHIEVING WIRE LEVEL PRIVACY: ALL METHODS ARE SECURED VIA SSL ..51
AUTHENTICATION ...51

Establishing credentials..51
Authentication tokens are not portable ...51
Generating Authentication Tokens..51

PER-ACCOUNT SPACE LIMITS ...52

APPENDIX E: SEARCH QUALIFIERS...53

General form of search qualifiers ...53
Search Qualifiers enumerated ..53
Search Qualifier Precedence ..54
Locale Details...54

APPENDIX F: RESPONSE MESSAGE REFERENCE ..55

APPENDIX G: REDIRECTION VIA HOSTINGREDIRECTOR ELEMENT..56

SPECIAL SITUATIONS REQUIRING THE HOSTINGREDIRECTOR ...56
USING THE HOSTINGREDIRECTOR DATA ..56

Stepwise overview...56

APPENDIX H: DETAILS ON THE VALIDATE_CATEGORIZATION CALL...58

VALIDATE_CATEGORIZATION ..58

REFERENCES...60

SEPTEMBER 6, 2000 PAGE 4

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

Introduction

Document Overview

This document describes the programming interface that is exposed by all instances of the
Universal Description, Discovery & Integration (UDDI) registry. The primary audience for this
document is programmers that want to write software that will directly interact with a UDDI
Operator Site1.

What is this UDDI anyway?

UDDI is the name of a group of web-based registries that expose information about a business or
other entity2 and its technical interfaces (or API’s). These registries are run by multiple Operator
Sites, and can be used by any business that wants to make their information available, as well as
anyone that wants to find that information. There is no charge for using the basic services of these
operating sites.

By accessing any of the public UDDI Operator Sites, anyone can search for information about web
services3 that are made available by or on behalf of a business. The benefit of having access to
this information is to provide a mechanism that allows others to discover what technical
programming interfaces are provided for interacting with a business for such purposes as
electronic commerce, etc. The benefit to the individual business is increased exposure in an
electronic commerce enabled world.

The information that a business can register includes several kinds of simple data that help others
determine the answers to the questions “who, what, where and how”. Simple information about a
business – information such as name, business identifiers (D&B numbers, etc.), and contact
information answers the question “Who?”. “What?” involves classification information that includes
industry codes and product classifications, as well as descriptive information about the services
that are available for electronic interchange. Answering he question “Where?” involves registering
information about the URL or email address (or other address) through which each type of service
is accessed4. Finally, the question “How?” is answered by registering references to information
about specifications that describe how a particular software package or technical interface
functions. These references are called tModels in the UDDI documentation.

Compatible registries

This programmer’s reference, coupled with the UDDI API schema (uddiAPI.xsd), defines a
programming interface that is available for free public use. Software developers, businesses and
others are encouraged to define products and tools that make use of this API and to build registries
that are compatible with the API defined in this specification.

1 Operator Site is a term used to describe an implementation of this specification that participates in the public cloud of UDDI sites
under special contract.

2 The term business is used in a general sense to refer to an operating concern or any other type of organization throughout this
document. This use is not intended to preclude other organizational forms.

3 Web Service is a term used to describe technical services that are exposed via some public standard. Examples include
purchasing services, catalog services, search services, shipping or postal services exposed over transports like HTTP or electronic
mail.

4 The information about the service point or address at which a service is exposed is sometimes referred to using the technical term
binding information. UDDI design specs refer to this using the term bindingTemplate.

SEPTEMBER 6, 2000 PAGE 5

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

What are tModels?

In order for two or more pieces of software to be compatible with each other – that is, compatible
enough to be able to exchange data for the purpose of achieving a desirable result – they must
share some design goals and specifications in common. The registry information model that each
UDDI site supports is based on this notion of shared specifications.

In the past, to build compatible software, two companies only had to agree to use the same
specification, and then test their software. However, with UDDI, companies need a way to publish
information about the specifications and versions of specifications that were used to design their
advertised services. To accommodate the need to distinctly identify public specifications (or even
private specifications shared only with select partners), information about the specifications
themselves needs to be discoverable. This information about specifications – a classic metadata
construct – is called a tModel within UDDI.

The tModel concept serves a useful purpose in discovering information about services that are
exposed for broad use. To get a clearer understanding, let’s consider an example.

An example:

Suppose your business bought a software package that let you automatically accept electronic
orders via your web site. Using one of the public UDDI sites, you could advertise the
availability of this electronic commerce capability.

One of the reasons you chose this particular software package was its widespread popularity.
In fact the salesperson that sold you the software made a point of highlighting a feature that
gives your new software its broad appeal – the use and support of a widely used set of XML
business documents to accommodate automatic business data interchange.

As you installed and configured your new software, this software automatically consulted one
of the public UDDI sites and identified compatible business partners. It did this by looking up
each business you identified, and located those that had already advertised support for
electronic commerce services that are compatible with your own.

The configuration software accomplishes this by taking advantage of the fact that a tModel has
been registered for a full specification, and in the service elements for each business, the
tModel keys for this specification was referenced.

In general, it’s pretty safe to think of the tModel keys within a service description as a fingerprint
that can be used to trace the compatibility origins of a given service. Since many services will be
constructed or programmed to be compatible with a given specification, references to information
about specifications (by way of tModel entries and tModel references) don’t have to be repeated
with each registered electronic commerce service.

For programmers that write the software that will be used by businesses, tModels provide a
common point of reference that allows compatible services to be easily identified. For businesses
that use this software, the benefit is greatly reduced work in determining which particular services
are compatible with the software you write. Finally, for software vendors and standards
organizations, the ability to register information about a specification and then find implementations
of web services that are compatible with a given tModel helps customers immediately realize the
benefits of a widely used design.

SEPTEMBER 6, 2000 PAGE 6

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

Classification and Identification information

One of the immediate benefits of registering business information at one of the UDDI Operator
Instances is the ability to specify one or more classification, or category codes for your business.
Many such codes exist – NAICS, UN/SPC, SIC Codes, etc. – and are widely used to classify
businesses, industries, and product categories. Other (and there are many) classifications
designate geographic information, or membership in a given organization.

Each UDDI site provides a way to add any number of classifications to a business registration.
This information allows simple searching to be done on the information contained in the public
registries. More important, registering information such as industry codes, product codes,
geography codes and business identification codes (such as D&B numbers) allow other search
services to use this core classification information as a starting point to provide added-value
indexing and classification while still referencing your UDDI information.

SEPTEMBER 6, 2000 PAGE 7

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

Design & Architecture

The UDDI programmer’s API is designed to provide a simple request/response mechanism that
allows discovery of businesses, services and technical service binding information.

Design Principles

The primary principal guiding the design of this programmers API was simplicity. Care has been
taken to avoid complexity, overlap, and also to provide direct access to the appropriate levels of
registered information with a minimum of programming overhead and round tripping.

Security

Accessing UDDI programmatically is accomplished via API calls defined in this programmer’s
reference. Two types of APIs are defined. A publishers API is provided for interactions between
programs and the UDDI registry for the purpose of storing or changing data in the registry. An
inquiry API is provided for programs that want to access the registry to read information from the
registry.

Authenticated access is required to use the publishers API. Each Operator Site is responsible for
selecting and implementing an authentication protocol that is compatible with the publishers API,
as well as providing a new user sign-up mechanism. Before using any of the publisher API
functions, the caller is responsible for signing up with one or more Operator Sites or compatible
registries and establishing user credentials.

The Inquiry API functions are exposed as SOAP messages over HTTP protocol. No
authentication is required to make use of the Inquiry API functions.

Versioning

In any programmers API, as well as any message set, versioning issues arise as time passes.
Changes to an API over time can result in requests being misunderstood or processed incorrectly
unless one can determine whether the version of the API being provided matches the version of
the API used by a requesting party.

In order to facilitate a proper and controlled version match, the entire API defined by this
programmer’s reference is version stamped. Since the API itself is based on XML messages
transmitted in SOAP envelopes over HTTP5, this version stamp takes the form of an XML attribute.

All of the messages defined in this API must be transmitted with an accompanying application
version attribute. This attribute is named “generic6” and is present on all messages. Each time this
specification is modified, an ensuing requirement is placed on all Operator Sites to support generic
1.0, the current generic and at least one prior generic, if any. Compatible registries are
encouraged to support at a minimum this 1.0 version.

5 HTTP is used as a general term here. HTTPS is used exclusively for all of the calls defined in the publishers API.

6 Versioning of application behavior is accommodated via the generic attribute independently from the structures defined in the
accompanying schema. In general, this form of versioning is preferable because it is easier to specify a new behavior against the
same structures than to try and get data structure definitions to reflect business rules. Versioning the actual schema structures
would present considerable technical difficulties after more than a small number of deployed applications existed.

SEPTEMBER 6, 2000 PAGE 8

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

SOAP Messaging

SOAP is a method for using Extensible Markup Language (XML) for use in message passing and
remote procedure call (RPC) protocols. SOAP has been jointly defined and submitted to the World
Wide Web consortium (W3C) for consideration as a standard web protocol.

SOAP is being used in conjunction with HTTP to provide a simple mechanism for passing XML
messages to Operator Sites using a standard HTTP-POST protocol. Unless specified, all
responses will be returned in the normal HTTP response document.

See the appendix on SOAP specific implementations for more information on the way that UDDI
Operator Sites use the SOAP schema as an envelope mechanism for passing XML messages.

XML conventions

The programming interface for UDDI is based on Extensible Markup Language (XML). See the
appendix (XML usage details) for more information on specific XML constructs and limitations used
in the specification of the programmers interface.

Error Handling

The first line of error reporting is governed by the SOAP specification. SOAP fault reporting and
fault codes will be returned for most invalid requests, or any request where the intent of the caller
cannot be determined.

If any application level error occurs in processing a request message, a dispositionReport structure
will be returned to the caller instead of a SOAP fault report. Disposition reports contain error
information that includes descriptions and typed keys that can be used to determine the cause of
the error. Refer to the appendix “Error Codes” for a general understanding of error codes. API
specific interpretations of error codes are described following each API reference page.

Many of the API constructs defined in this document allow one or more of a given type of
information to be passed. These API calls conceptually each represent a request on the part of the
caller. The general error handling treatment is to detect errors in a request prior to processing the
request. Any errors in the request detected will invalidate the entire request, and cause a
dispositionReport to be generated within a SOAP Fault structure (see appendix A). In the case of
an API call that involves passing multiples of a given structure, the dispositionReport will call out
only the first detected error, and is not responsible for reporting multiple errors or reflecting
intermediate “good” data.

White Space

Operator Sites and compatible implementations will store all data exactly as provided with one
exception. Any leading or trailing white space characters will be removed from each field, element
or attribute. White space characters include carriage returns, line feeds, spaces, and tabs.

XML Encoding

Despite its cross platform goals, XML still permits a broad degree of platform dependent ordering
to seep into software. One of the key areas of seep has to do with the way that multiple language
encoding is allowable in the XML specification. For the purpose of this specification and all UDDI
Operator Sites consistency in handling of data is essential. For this reason, the default collation
order for data registered within an Operator Site is binary. See appendix B for more information

SEPTEMBER 6, 2000 PAGE 9

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

related to the use of byte order marks and UTF-8 and the way the SOAP listeners convert all
requests to Unicode prior to processing.

SEPTEMBER 6, 2000 PAGE 10

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

API Reference

This API reference is divided into n logical sections. Each section addresses a particular
programming focus. The sections are arranged in order according to the most common uses, and
within each section alphabetically.

Special values within API syntax examples are shown in italics. In most cases, the following
reference applies to these values:

• uuid_key: Access keys within all UDDI defined data elements are represented as
universal unique identifiers (these are sometimes called a GUID). The name of the
element or attribute designates the particular key type that is required. These keys are
always formatted according to DCE UUID conventions with the one exception being
tModelKey values, which are prefixed with a URN qualifier in the format "uuid:" followed by
the UUID value.

• generic: This special attribute is a required metadata element for all messages. It is used
to designate the specification version used to format the SOAP message. In the 1.0
version of the specification, this value is required to be “1.0". Any other value passed can
result in an E_unsupported error.

• xmlns: This special attribute is a required metadata element for all messages.
Technically, it isn’t an attribute, but is formally called a namespace qualifier. It is used to
designate is a universal resource name (URN) value that is reserved for all references to
the UDDI schema. In the 1.0 version of the specification, this value is required to be
“urn:uddi-org:api".

• findQualifiers: This special element is found in the inquiry API functions that are used to
search (e.g. find_binding, find_business, find_service, find_tModel). This argument is
used to signal special behaviors to be used with searching. See the Search Qualifiers
appendix for more information.

• maxRows: This special qualifier is found in the inquiry API functions that are used to
search (e.g. find_binding, find_business, find_service, find_tModel). This argument is
used to limit the number of results returned from a request. When an Operator Site or
compatible instance returns data in response to a request that contains this limiting
argument, the number of results will not exceed the integer value passed. If a result set is
truncated as a result of applying this limit, the result will include the truncated attribute with
a value of true.

• truncated: The truncated attribute indicates that a maximum number of possible results
has been returned. The actual limit set for applying this treatment is Operator Site policy
specific, but in general should be a sufficiently large number so as to not normally be an
issue. No behaviors such as paging mechanisms are defined for retrieving more data
after a truncated limit. The intent is to support the average query, but to allow Operator
Sites the leeway required to be able to manage adequate performance.

• categoryBag: Searches can be performed based on a cross section of categories.
Several categories are broadly supported by all Operator Sites and provide three
categorization dimensions. These are industry type, product and service type, and
geography. Searches involving category information can be combined to cross multiple

SEPTEMBER 6, 2000 PAGE 11

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

dimensions. For this reason, these searches are performed matching on ALL of the
categories supplied. The net effect in generic 1 is the ability to use embedded category
information as hints about how the registering party has categorized themselves, but not
to provide a full third party categorization facility. This is the realm of portals and
marketplaces, and may be enhanced in future generics.

• identifierBag: Searches involving identifiers are performed matching on any supplied
identifier (e.g. D&B number, etc) for any of the primary elements that have identifierBag
elements. These searches allow broad identity matching by returning a match when any
keyedReference set used to search identifiers matches a registered identifier.

• tModelBag: Searches that match a particular technical fingerprint use UUID values to
search for bindingTemplates with matching tModelKey value sets. When used to search
for web services (e.g the data described by a bindingTemplate structure), the concept of
tModel signatures allows for highly selective searches for specific combinations of keys.
For instance, the existence of a web service that implements all of the parts of the UDDI
specifications can be accomplished by searching for a combination of tModel key values
that correspond to the full set of specifications (the UDDI specification, for instatnce, is
divided into at least 5 different, separately deployable tModels). At the same time, limiting
the number of tModelKey values passed in a search can perform broader searches that
look for any web service that implements a specific sub-part of the full specification. All
tModelKey values are always expressed using a Universal Resource Name (URN) format
that starts with the characters "uuid:" followed by a formatted Universally Unique Identifier
(UUID) consisting of an octet of Hexidecimal digits arranged in the common 12-4-4-8
format pattern.

In all cases, the XML structures, attributes and element names shown in the API examples are
derived from the Message API schema. For a full understanding of structure contents, refer to this
schema. It is suggested that tools that understand schemas be used to generate logic that
populates the structures used to make the API calls against an Operator Site.

Three query patterns

The Inquiry API provides three forms of query that follow broadly used conventions. These two
forms match the needs of two types of software that are traditionally used with registries.

The browse pattern

Software that allows people to explore and examine data – especially hierarchical data – requires
browse capabilities. The browse pattern characteristically involves starting with some broad
information, performing a search, finding general result sets and then selecting more specific
information for drill-down.

The UDDI API specifications accommodate the browse pattern by way of the find_xx API calls.
These calls form the search capabilities provided by the API and are matched with summary return
messages that return overview information about the registered information that match the
supplied search criteria.

A typical browse sequence might involve finding whether a particular business you know about has
any information registered. This sequence would start with a call to find_business, perhaps
passing the first few characters of the businesses name that you already know. This returns a
businessList result. This result is overview information (keys, names and descriptions) of the
businessEntity information that matched the search results returned by find_business.

SEPTEMBER 6, 2000 PAGE 12

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

If you spot the business you are looking for, you can drill into their businessService information,
looking for particular service types (e.g. purchasing, shipping, etc) using the find_service API call.
Similarly, if you know the technical fingerprint (tModel signature) of a particular product and want to
see if the business you’ve chosen supports a compatible service interface, you can use
find_binding.

The drill-down pattern

Once you have a key for one of the four main data types managed by a UDDI or compatible
registry7, you can use that key to access the full registered details for a specific data instance. The
current UDDI data types are businessEntity, businessService, bindingTemplate and tModel. You
can access the full registered information for any of these structures by passing a relevant key type
to one of the get_xx API calls.

Continuing the example from the previous section on browsing, one of the data items returned by
all of the find_xx return sets is key information. In the case of the business we were interested in,
the businessKey value returned within the contents of a businessList structure can be passed as
an argument to get_businessDetail. The successful return to this message is a businessDetail
message containing the full registered information for the entity whose key value was passed. This
will be a full businessEntity structure.

The invocation pattern

In order to prepare an application to take advantage of a remote web service that is registered
within the UDDI registry by other businesses or entities, you need to prepare that application to use
the information found in the registry for the specific service being invoked. This type of cross
business service call has traditionally been a task that is undertaken at development time. This will
not necessarily change completely as a result of UDDI registry entries, but one significant problem
can be managed if a particular invocation pattern is employed.

Data obtained from the UDDI registry about a bindingTemplate information set represents the
instance specifics of a given remote service. The program should cache this information and use it
to contact the service at the registered address. Tools have automated the tasks associated with
caching (or hard coding) location information in previously popular remote procedure technologies.
Problems arise however when a remote service is moved without any knowledge on the part of the
callers. Moves occur for a variety of reasons, including server upgrades, disaster recovery, and
service acquisition and business name changes.

When a call fails using cached information obtained from a UDDI registry, the proper behavior is to
query the UDDI registry where the data was obtained for fresh bindingTemplate information. The
proper call is get_bindingDetails passing the original bindingKey value. If the data returned is
different from the cached information, the service invocation should automatically retry. If the result
of this retry is successful, the new information should replace the cached information.

By using this pattern with web services, a business using a UDDI Operator Site can automate the
recovery of a large number of partners without undue communication and coordination costs. For
example, if a business has activated a disaster recovery site, most of the calls from partners will fail
when they try to invoke services at the failed site. By updating the UDDI information with the new
address for the service, partners who use the invocation pattern will automatically locate the new
service information and recover without further administrative action.

7 Keys within UDDI compatible registries that are not Operator Sites are not synchronized with keys generated by Operator Sites.
There is no key portability mechanism defined for crossing from a replicated operator site to a compatible registry that is not part of
the replicated Operator Cloud.

SEPTEMBER 6, 2000 PAGE 13

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

Inquiry API functions

The messages in this section represent inquiries that anyone can make of any UDDI Operator Site
at any time. These messages all behave synchronously and are required to be exposed via
HTTP-POST only. Other synchronous or asynchronous mechanisms may be provided at the
discretion of the individual UDDI Operator Site or UDDI compatible registry.

The publicly accessible queries are:

• find_binding: Used to locate specific bindings within a registered businessService.
Returns a bindingDetail message.

• find_business: Used to locate information about one or more businesses. Returns a
businessList message.

• find_service: Used to locate specific services within a registered businessEntity. Returns
a serviceList message.

• find_tModel: Used to locate one or more tModel information structures. Returns a
tModelList structure.

• get_bindingDetail: Used to get full bindingTemplate information suitable for making one
or more service requests. Returns a bindingDetail message.

• get_businessDetail: Used to get the full businessEntity information for a one or more
businesses. Returns a businessDetail message.

• get_businessDetailExt: Used to get extended businessEntity information. Returns a
businessDetailExt message.

• get_serviceDetail: Used to get full details for a given set of registered businessService
date. Returns a serviceDetail message.

• get_tModelDetail: Used to get full details for a given set of registered tModel data.
Returns a tModelDetail message.

SEPTEMBER 6, 2000 PAGE 14

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

find_binding

The find_binding message returns a bindingDetail message that contains a bindingTemplates
structure with zero or more bindingTemplate structures matching the criteria specified in the
argument list.

Syntax:

<find_binding serviceKey="uuid_key" generic="1.0" [maxRows="nn"]
 xmlns="urn:uddi-org:api" >
 [<findQualifiers/>]
 <tModelBag/>
</find_binding>

Arguments:

• maxRows: This optional integer value allows the requesting program to limit the number
of results returned.

• serviceKey: This uuid_key is used to specify a particular instance of a businessService
element in the registered data. Only bindings in the specific businessService data
identified by the serviceKey passed will be searched.

• findQualifiers: This collection of findQualifier elements can be used to alter the default
behavior of search functionality. See the Search Qualifiers appendix for more information.

• tModelBag: This is a list of tModel uuid_key values that represent the technical fingerprint
to locate in a bindingTemplate structure contained within the businessService instance
specified by the serviceKey value. If more than one tModel key is specified in this
structure, only bindingTemplate information that exactly matches all of the tModel keys
specified will be returned (logical AND). The order of the keys in the tModel bag is not
relevant. All tModelKey values begin with a uuid URN qualifier (e.g. "uuid:" followed by a
known tModel UUID value.

Returns:

This function returns a bindingDetail message on success. In the event that no matches were
located for the specified criteria, the bindingDetail structure returned in the response the will be
empty (e.g. contain no bindingTemplate data.)

In the even of a large number of matches, an Operator Site may truncate the result set. If this
occurs, the response message will contain the truncated attribute with the value of this attribute set
to true.

Searching using tModelBag will also return any bindingTemplate information that matches due to
hostingRedirector references. The resolved bindingTemplate structure will be returned, even if that
bindingTemplate is owned by a different businessService structure.

Caveats:

If any error occurs in processing this message, a dispositionReport structure will be returned to the
caller in a SOAP Fault. The following error number information will be relevant:

SEPTEMBER 6, 2000 PAGE 15

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

• E_invalidKeyPassed: signifies that the uuid_key value passed did not match with any
known serviceKey key or tModel key values. The error structure will signify which
condition occurred first.

• E_tooManyOptions: signifies that more than one mutually exclusive argument was
passed.

• E_unsupported: signifies that one of the findQualifier values passed was invalid.

SEPTEMBER 6, 2000 PAGE 16

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

find_business

The find_business message returns a businessList message that matches the
conditions specified in the arguments.

Syntax:

<find_business generic="1.0" [maxRows="nn"] xmlns="urn:uddi-org:api" >
 [<findQualifiers/>]
 <name/> | <identifierBag/> | <categoryBag/> | <tModelBag/> | <discoveryURLs>
</find_business>

Arguments: All arguments to this call listed are mutually exclusive except findQualifiers

• maxRows: This optional integer value allows the requesting program to limit the number
of results returned.

• findQualifiers: This collection of findQualifier elements can be used to alter the default
behavior of search functionality. See the Search Qualifiers appendix for more information.

• name: This string value is a partial name. The businessList return contains businessInfo
structures for businesses whose name matches the value passed (leftmost match).

• identifierBag: This is a list of business identifier references. The returned businessList
contains businessInfo structures matching any of the identifiers passed (logical OR).

• categoryBag: This is a list of category references. The returned businessList contains
businessInfo structures matching all of the categories passed (logical AND).

• tModelBag: The registered businessEntity data contains bindingTemplates that in turn
contain specific tModel references. The tModelBag argument lets you search for
businesses that have bindings that are compatible with a specific tModel pattern. The
returned businessList contains businessInfo structures that match all of the tModel keys
passed (logical AND). tModelKey values must be formatted as URN qualified UUID
values (e.g. prefixed with "uuid:")

• discoveryURLs: This is a list of URL’s to be matched against the data associated with the
discoveryURL’s contents of registered businessEntity information. To search for URL
without regard to useType attribute values, pass the useType component of the
discoveryURL elements as empty attributes. If useType values are included, then the
match will be made only on registered information that match both the useType and URL
value. The returned businessList contains businessInfo structures matching any of the
URL's passed (logical OR).

Returns:

This function returns a businessList on success. In the event that no matches were located for the
specified criteria, a businessList structure with zero businessInfo structures is returned.

In the event of a large number of matches, an Operator Site may truncate the result set. If this
occurs, the businessList will contain the truncated attribute with the value set to true.

Searching using tModelBag will also return any businessEntity that contains bindingTemplate
information that matches due to hostingRedirector references. In other words, the businessEntity

SEPTEMBER 6, 2000 PAGE 17

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

that contains a bindingTemplate with a hostingRedirector value referencing a bindingTemplate that
matches the tModel search requirements will be returned.

Caveats:

If any error occurs in processing this message, a dispositionReport structure will be returned to the
caller in a SOAP Fault. The following error number information will be relevant:

• E_nameTooLong: signifies that the partial name value passed exceeds the maximum
name length designated by the Operator Site.

• E_tooManyOptions: signifies that more than one search argument was passed.

• E_unsupported: signifies that one of the findQualifier values passed was invalid.

SEPTEMBER 6, 2000 PAGE 18

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

find_service

The find_service message returns a serviceList message that matches the conditions specified in
the arguments.

Syntax:

<find_service businessKey="uuid_key" generic="1.0" [maxRows="nn"]
 xmlns="urn:uddi-org:api" >
 [<findQualifiers/>]
 <name/> | <categoryBag/> | <tModelBag/>
</find_service>

Arguments: The name, categoryBag and tModelBag arguments are mutually exclusive

• maxRows: This optional integer value allows the requesting program to limit the number
of results returned.

• businessKey: This uuid_key is used to specify a particular BusinessEntity instance.

• findQualifiers: This collection of findQualifier elements can be used to alter the default
behavior of search functionality. See the Search Qualifiers appendix for more information.

• name: This string value represents a partial name. Any businessService data contained
in the specified businessEntity with a matching partial name value gets returned.

• categoryBag: This is a list of category references. The returned serviceList contains
businessInfo structures matching all of the categories passed (logical AND).

• tModelBag: This is a list of tModel uuid_key values that represent the technical fingerprint
to locate within a bindingTemplate structure contained within any businessService
contained by the businessEntity specified. If more than one tModel key is specified in this
structure, only businessServices that contain bindingTemplate information that matches all
of the tModel keys specified will be returned (logical AND)

Returns:

This function returns a serviceList on success. In the event that no matches were located for the
specified criteria, the serviceList structure returned will contain an empty businessServices
structure. This signifies zero matches.

In the even of a large number of matches, an Operator Site may truncate the result set. If this
occurs, the serviceList will contain the truncated attribute with the value of this attribute set to true.

Searching using tModelBag will return serviceInfo structure for all qualifying businesService data,
including matches due to hostingRedirector references. In other words, if the businessEntity
whose businessKey is passed as an argument contains a bindingTemplate with a
hostingRedirector value, and that value references a bindingTemplate that matches the tModel
search requirements, then the serviceInfo for the businessService containing the hostingRedirector
will be returned.

SEPTEMBER 6, 2000 PAGE 19

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

Caveats:

If any error occurs in processing this message, a dispositionReport structure will be returned to the
caller in a SOAP Fault. The following error number information will be relevant:

• E_invalidKeyPassed: signifies that the uuid_key value passed did not match with any
known businessKey key or tModel key values. The error structure will signify which
condition occurred first.

• E_nameTooLong: signifies that the partial name value passed exceeds the maximum
name length designated by the Operator Site.

• E_tooManyOptions: signifies that more than one mutually exclusive argument was
passed.

• E_unsupported: signifies that one of the findQualifier values passed was invalid.

SEPTEMBER 6, 2000 PAGE 20

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

find_tModel

This find_tModel message is for locating a list of tModel entries that match a set of specific criteria.
The response will be a list of abbreviated information about tModels that match the criteria
(tModelList).

Syntax:

<find_tModel generic="1.0" [maxRows="nn"] xmlns="urn:uddi-org:api" >
 [<findQualifiers/>]
 <name/> | <identifierBag/> | <categoryBag/>

</find_tModel>

Arguments: The arguments to this call are mutually exclusive except findQualifiers

• maxRows: This optional integer value allows the requesting program to limit the number
of results returned.

• findQualifiers: This collection of findQualifier elements can be used to alter the default
behavior of search functionality. See the Search Qualifiers appendix for more information.

• name: This string value represents a partial name. The returned tModelList contains
tModelInfo structures for businesses whose name matches the value passed (leftmost
match).

• IdentifierBag: This is a list of business identifier references. The returned tModelList
contains tModelInfo structures matching any of the identifiers passed (logical OR).

• categoryBag: This is a list of category references. The returned tModelList contains
tModelInfo structures matching all of the categories passed (logical AND).

Returns:

This function returns a tModelList on success. In the event that no matches were located for the
specified criteria, an empty tModelList structure will be returned (e.g. will contain zero tModelInfo
structures). This signifies zero matches.

In the even of a large number of matches, an Operator Site may truncate the result set. If this
occurs, the tModelList will contain the truncated attribute with the value of this attribute set to true.

Caveats:

If any error occurs in processing this message, a dispositionReport structure will be returned to the
caller in a SOAP Fault. The following error number information will be relevant:

• E_nameTooLong: signifies that the partial name value passed exceeds the maximum
name length designated by the Operator Site.

• E_tooManyOptions: signifies that more than one mutually exclusive argument was
passed.

• E_unsupported: signifies that one of the findQualifier values passed was invalid.

SEPTEMBER 6, 2000 PAGE 21

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

get_bindingDetail

The get_bindingDetail message is for requesting the run-time bindingTemplate information location
information for the purpose of invoking a registered business API.

Syntax:

<get_bindingDetail generic="1.0" xmlns="urn:uddi-org:api" >
 <bindingKey/>
 [<bindingKey/> …]
</get_bindingDetail>

Arguments:

• bindingKey : one or more uuid_key values that represent specific instances of known
bindingTemplate data.

Behavior:

In general, it is recommended that bindingTemplate information be cached locally by applications
so that repeated calls to a service described by a bindingTemplate can be made without having to
make repeated round trips to an UDDI registry. In the event that a call made with cached data
fails, the get_bindingDetail message can be used to get fresh bindingTemplate data. This is useful
in cases such as a service you are using relocating to another server or being restored in a disaster
recovery site.

Returns:

This function returns a bindingDetail message on successful match of one or more bindingKey
values. If multiple bindingKey values were passed, the results will be returned in the same order
as the keys passed.

In the even of a large number of matches, an Operator Site may truncate the result set. If this
occurs, the bindingDetail result will contain the truncated attribute with the value of this attribute set
to true.

Caveats:

If any error occurs in processing this message, a dispositionReport structure will be returned to the
caller in a SOAP Fault. The following error number information will be relevant:

• E_invalidKeyPassed: signifies that one of the uuid_key values passed did not match with
any known bindingKey key values. No partial results will be returned – if any bindingKey
values passed are not valid bindingKey values, this error will be returned.

SEPTEMBER 6, 2000 PAGE 22

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

get_businessDetail

The get_businessDetail message returns complete businessEntity information for one or more
specified businessEntitys.

Syntax:

<get_businessDetail generic="1.0" xmlns="urn:uddi-org:api" >
 <businessKey/>
 [<businessKey/> …]
</get_businessDetail>

Arguments:

• businessKey : one or more uuid_key values that represent specific instances of known
businessEntity data.

Returns:

This function returns a businessDetail message on successful match of one or more businessKey
values. If multiple businessKey values were passed, the results will be returned in the same order
as the keys passed.

In the even of a large number of matches, an Operator Site may truncate the result set. If this
occurs, the businessDetail response message will contain the truncated attribute with the value of
this attribute set to true.

Caveats:

If any error occurs in processing this message, a dispositionReport structure will be returned to the
caller in a SOAP Fault. The following error number information will be relevant:

• E_invalidKeyPassed: signifies that one of the uuid_key values passed did not match with
any known businessKey values. No partial results will be returned – if any businessKey
values passed are not valid, this error will be returned.

SEPTEMBER 6, 2000 PAGE 23

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

get_businessDetailExt

The get_businessDetailExt message returns extended businessEntity information for one or more
specified businessEntitys. This message returns exactly the same information as the
get_businessDetail message, but may contain additional attributes if the source is an external
registry (not an Operator Site) that is compatible with this API specification.

Syntax:

<get_businessDetailExt generic="1.0" xmlns="urn:uddi-org:api" >
 <businessKey/>
 [<businessKey/> …]
</get_businessDetailExt>

Arguments:

• businessKey : one or more uuid_key values that represent specific instances of known
businessEntity data.

Returns:

This function returns a businessDetailExt message on successful match of one or more
businessKey values. If multiple businessKey values were passed, the results will be returned in
the same order as the keys passed.

In the even of a large number of matches, an Operator Site may truncate the result set. If this
occurs, the businessDetailExt response message will contain the truncated attribute with the value
of this attribute set to true.

Caveats:

If any error occurs in processing this message, a dispositionReport structure will be returned to the
caller in a SOAP Fault. The following error number information will be relevant:

• E_invalidKeyPassed: signifies that one of the uuid_key values passed did not match with
any known businessKey values. No partial results will be returned – if any businessKey
values passed are not valid, this error will be returned.

• E_unsupported: signifies that the implementation queried does not support the extended
detail function. If this occurs, businessDetail information should be queried via the
get_businessDetail API. Operator Sites will not return this code, but will instead return a
businessDetailExt result with full businessDetail information embedded.

SEPTEMBER 6, 2000 PAGE 24

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

get_serviceDetail

The get_serviceDetail message is used to request full information about a known businessService
structure.

Syntax:

<get_serviceDetail generic="1.0" xmlns="urn:uddi-org:api" >
 <serviceKey/>
 [<serviceKey/> …]
</get_serviceDetail>

Arguments:

• serviceKey : one or more uuid_key values that represent specific instances of known
businessService data.

Returns:

This function returns a serviceDetail message on successful match of one or more serviceKey
values. If multiple serviceKey values were passed, the results will be returned in the same order as
the keys passed.

In the even of a large number of matches, an Operator Site may truncate the result set. If this
occurs, the response will contain a truncated attribute with the value of this attribute set to true.

Caveats:

If any error occurs in processing this message, a dispositionReport structure will be returned to the
caller in a SOAP Fault. The following error number information will be relevant:

• E_invalidKeyPassed: signifies that one of the uuid_key values passed did not match with
any known serviceKey values. No partial results will be returned – if any serviceKey
values passed are not valid, this error will be returned.

SEPTEMBER 6, 2000 PAGE 25

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

get_tModelDetail

The get_tModelDetail message is used to request full information about a known tModel structure.

Syntax:

<get_tModelDetail generic="1.0" xmlns="urn:uddi-org:api" >
 <tModelKey/>
 [<tModelKey/> …]
</get_tModelDetail>

Arguments:

• tModelKey : one or more URN qualified uuid_key values that represent specific instances
of known tModel data. All tModelKey values begin with a uuid URN qualifier (e.g. "uuid:"
followed by a known tModel UUID value.)

Returns:

This function returns a tModelDetail message on successful match of one or more tModelKey
values. If multiple tModelKey values were passed, the results will be returned in the same order as
the keys passed.

In the even of a large number of matches, an Operator Site may truncate the result set. If this
occurs, the response will contain a truncated attribute with the value of this attribute set to true.

Caveats:

If any error occurs in processing this message, a dispositionReport structure will be returned to the
caller in a SOAP Fault. The following error number information will be relevant:

• E_invalidKeyPassed: signifies that one of the URN qualified uuid_key values passed did
not match with any known tModelKey values. No partial results will be returned – if any
tModelKey values passed are not valid, this error will be returned. Any tModelKey values
passed without a uuid URN qualifier will be considered invalid.

• E_keyRetired: signifies that the request cannot be satisfied because the owner has
retired the tModel information. The tModel reference may still be valid and used as
intended, but the information defining the tModel behind the key is unavailable.

SEPTEMBER 6, 2000 PAGE 26

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

Publishing API functions

The messages in this section represent inquiries that require authenticated8 access to an UDDI
Operator Site. Each business should initially select one Operator Site to host their information.
Once chosen, information can only be updated at the site originally selected.

The messages defined in this section all behave synchronously and are callable via HTTP-POST
only. HTTPS is used exclusively for all of the calls defined in this publishers API.

The publishing API calls are:

• delete_binding: Used to remove an existing bindingTemplate from the bindingTemplates
collection that is part of a specified businessService structure.

• delete_business: Used to delete registered businessEntity information from the registry.

• delete_service: Used to delete an existing businessService from the businessServices
collection that is part of a specified businessEntity.

• delete_tModel: Used to delete registered information about a tModel. If there are any
references to a tModel when this call is made, the tModel will be marked deleted instead
of being physically removed.

• discard_authToken: Used to inform an Operator Site that a previously provided
authentication token is no longer valid. See get_authToken.

• get_authToken: Used to request an authentication token from an Operator Site.
Authentication tokens are required to use all other API’s defined in the publishers API.
This function serves as the programs equivalent of a login request.

• get_registeredInfo: Used to request an abbreviated synopsis of all information currently
managed by a given individual.

• save_binding: Used to register new bindingTemplate information or update existing
bindingTemplate information. Use this to control information about technical capabilities
exposed by a registered business.

• save_business:. Used to register new businessEntity information or update existing
businessEntity information. Use this to control the overall information about the entire
business. Of the save_x API’s this one has the broadest effect.

• save_service: Used to register or update complete information about a businessService
exposed by a specified businessEntity.

• save_tModel: Used to register or update complete information about a tModel.

8 Authentication is not regulated by this API specification. Individual Operator Sites will designate their own procedures for getting a
userID and password.

SEPTEMBER 6, 2000 PAGE 27

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

Special considerations around categorization

Several of the API’s defined in this section allow you to save categorization information that is used
to support searches that use taxonomy references. These are currently the save_business,
save_service and save_tModel APIs. Categorization is specified using an optional element named
categoryBag, which contains namespace-qualified references to taxonomy keys and descriptions
in keyedReference structures.

Data contained in the keyValue attribute of each keyedReference is validated against the
taxonomy referenced by the associated tModelKey. Only valid keyValues will be stored as entered.
Operator Sites may handle invalid keyValues by either fail the request or changing the tModelKey
value to reference an non-validated “etc.” taxonomy which accepts all keyValues. See Appendix H
for details on the validation of taxonomic information. If the Operator Site chooses to fail
categorization mechanisms, the error codes defined in appendix H will be passed back as the error
code on the relevant API calls.

delete_binding

The delete_binding message causes one or more bindingTemplate to be deleted.

Syntax:

<delete_binding generic="1.0" xmlns="urn:uddi-org:api" >
 <authInfo/>
 <bindingKey/>
 [<bindingKey/> …]
</delete_binding>

Arguments:

• authInfo: this required argument is an element that contains an authentication token.
Authentication tokens are obtained using the get_authToken API call.

• bindingKey : one or more uuid_key values that represent specific instances of known
bindingTemplate data.

Returns:

Upon successful completion, a dispositionReport is returned with a single success indicator.

Caveats:

If any error occurs in processing this message, a dispositionReport structure will be returned to the
caller in a SOAP Fault. The following error number information will be relevant:

• E_invalidKeyPassed: signifies that one of the uuid_key values passed did not match with
any known bindingKey values. No partial results will be returned – if any bindingKey
values passed are not valid, this error will be returned.

• E_authTokenExpired: signifies that the authentication token value passed in the authInfo
argument is no longer valid because the token has expired.

SEPTEMBER 6, 2000 PAGE 28

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

• E_authTokenRequired: signifies that the authentication token value passed in the
authInfo argument is either missing or is not valid.

• E_userMismatch: signifies that one or more of the bindingKey values passed refers to
data that is not controlled by the individual who is represented by the authentication token.

• E_operatorMismatch: signifies that one or more of the bindingKey values passed refers
to data that is not controlled by the Operator Site that received the request for processing.

SEPTEMBER 6, 2000 PAGE 29

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

delete_business

The delete_business message is used to remove one or more businessEntity structures.

Syntax:

<delete_business generic="1.0" xmlns="urn:uddi-org:api" >
 <authInfo/>
 <businessKey/>
 [<businessKey/> …]
</delete_business>

Arguments:

• authInfo: this required argument is an element that contains an authentication token.
Authentication tokens are obtained using the get_authToken API call.

• businessKey : one or more uuid_key values that represent specific instances of known
businessEntity data.

Returns:

Upon successful completion, a dispositionReport is returned with a single success indicator.

Caveats:

If any error occurs in processing this message, a dispositionReport structure will be returned to the
caller in a SOAP Fault. The following error number information will be relevant:

• E_invalidKeyPassed: signifies that one of the uuid_key values passed did not match with
any known businessKey values. No partial results will be returned – if any businessKey
values passed are not valid, this error will be returned.

• E_authTokenExpired: signifies that the authentication token value passed in the authInfo
argument is no longer valid because the token has expired.

• E_authTokenRequired: signifies that the authentication token value passed in the
authInfo argument is either missing or is not valid.

• E_userMismatch: signifies that one or more of the businessKey values passed refers to
data that is not controlled by the individual who is represented by the authentication token.

• E_operatorMismatch: signifies that one or more of the businessKey values passed refers
to data that is not controlled by the Operator Site that received the request for processing.

SEPTEMBER 6, 2000 PAGE 30

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

delete_service

The delete_service message is used to remove one or more businessService structures.

Syntax:

<delete_service generic="1.0" xmlns="urn:uddi-org:api" >
 <authInfo/>
 <serviceKey/>
 [<serviceKey/> …]
</delete_service>

Arguments:

• authInfo: this required argument is an element that contains an authentication token.
Authentication tokens are obtained using the get_authToken API call.

• serviceKey : one or more uuid_key values that represent specific instances of known
businessService data.

Returns:

Upon successful completion, a dispositionReport is returned with a single success indicator.

Caveats:

If any error occurs in processing this message, a dispositionReport structure will be returned to the
caller in a SOAP Fault. The following error number information will be relevant:

• E_invalidKeyPassed: signifies that one of the uuid_key values passed did not match with
any known serviceKey values. No partial results will be returned – if any serviceKey
values passed are not valid, this error will be returned.

• E_authTokenExpired: signifies that the authentication token value passed in the authInfo
argument is no longer valid because the token has expired.

• E_authTokenRequired: signifies that the authentication token value passed in the
authInfo argument is either missing or is not valid.

• E_userMismatch: signifies that one or more of the serviceKey values passed refers to
data that is not controlled by the individual who is represented by the authentication token.

• E_operatorMismatch: signifies that one or more of the serviceKey values passed refers
to data that is not controlled by the Operator Site that received the request for processing.

SEPTEMBER 6, 2000 PAGE 31

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

delete_tModel

The delete_tModel message is used to remove or retire one or more tModel structures.

Syntax:

<delete_tModel generic="1.0" xmlns="urn:uddi-org:api" >
 <authInfo/>
 <tModelKey/> [<tModelKey/> …]
</delete_tModel>

Arguments:

• authInfo: this required argument is an element that contains an authentication token.
Authentication tokens are obtained using the get_authToken API call.

• tModelKey : one or more URN qualified uuid_key values that represent specific instances
of known tModel data. All tModelKey values begin with a uuid URN qualifier (e.g. "uuid:"
followed by a known tModel UUID value.)

Returns:

Upon successful completion, a dispositionReport is returned with a single success indicator.

Behavior:

If a tModel is deleted and any other managed data references to that tModel by uuid_key (e.g.
within a categoryBag, identifierBag or within a tModelInstanceInfo structure) it will not be physically
deleted as a result of this call. Instead it will be marked as hidden. Any tModels hidden in this way
are still accessible to their owner, via the get_registeredInfo, but will be omitted from any results
returned by calls to find_tModel. The details associated with a hidden tModel are still available to
anyone that uses the get_tModelDetail message. Pubshing parties that want to remove all details
about a tModel from the system should call save_tModel, passing empty values in the data fields,
before calling this function. A hidden tModel can be restored and made universally visible by
invoking the save_tModel API at a later time, passing the key of the hidden tModel.

Caveats:

If any error occurs in processing this message, a dispositionReport structure will be returned to the
caller in a SOAP Fault. The following error number information will be relevant:

• E_invalidKeyPassed: signifies that one of the URN qualified uuid_key values passed did
not match with any known tModelKey values. No partial results will be returned – if any
tModelKey values passed are not valid, this error will be returned. Any tModelKey values
passed without a uuid URN qualifier will be considered invalid.

• E_authTokenExpired: signifies that the authentication token value passed in the authInfo
argument is no longer valid because the token has expired.

• E_authTokenRequired: signifies that the authentication token value passed in the
authInfo argument is either missing or is not valid.

• E_userMismatch: signifies that one or more of the tModelKey values passed refers to
data that is not controlled by the individual who is represented by the authentication token.

SEPTEMBER 6, 2000 PAGE 32

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

• E_operatorMismatch: signifies that one or more of the tModelKey values passed refers
to data that is not controlled by the Operator Site that received the request for processing.

SEPTEMBER 6, 2000 PAGE 33

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

discard_authToken

The discard_authToken message is used to inform an Operator Site that the authentication token
can be discarded. Subsequent calls that use the same authToken may be rejected. This message
is optional for Operator Sites that do not manage session state or that do not support the
get_authToken message.

Syntax:

<discard_authToken generic="1.0" xmlns="urn:uddi-org:api" >
 <authInfo/>
</discard_authToken>

Arguments:

• authInfo: this required argument is an element that contains an authentication token.
Authentication tokens are obtained using the get_authToken API call.

Returns:

Upon successful completion, a dispositionReport is returned with a single success indicator.
Discarding an expired authToken will be processed and reported as a success condition.

Caveats:

If any error occurs in processing this message, a dispositionReport structure will be returned to the
caller in a SOAP Fault. The following error number information will be relevant:

• E_authTokenRequired: signifies that the authentication token value passed in the
authInfo argument is either missing or is not valid.

SEPTEMBER 6, 2000 PAGE 34

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

get_authToken

The get_authToken message is used to obtain an authentication token. Authentication tokens are
opaque values that are required for all other publisher API calls. This message is not required for
Operator Sites that have an external mechanism defined for users to get an authentication token.
This API is provided for implementations that do not have some other method of obtaining an
authentication token or certificate, or that choose to use userID and Password based
authentication.

Syntax:

<get_authToken generic="1.0" xmlns="urn:uddi-org:api"
 userID="someLoginName"
 cred="someCredential"
</get_authToken>

Arguments:

• userID: this required attribute argument is the user that an individual authorized user was
assigned by an Operator Site. Operator Sites will each provide a way for individuals to
obtain a UserID and password that will be valid only at the given Operator Site.

• cred: this required attribute argument is the password or credential that is associated with
the user.

Returns:

This function returns an authToken message that contains a valid authInfo element that can be
used in subsequent calls to publisher API calls that require an authInfo value.

Caveats:

If any error occurs in processing this message, a dispositionReport structure will be returned to the
caller in a SOAP Fault. The following error number information will be relevant:

• E_unknownUser: signifies that the Operator Site that received the request does not
recognize the userID and/or pwd argument values passed as valid credentials.

SEPTEMBER 6, 2000 PAGE 35

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

get_registeredInfo

The get_registeredInfo message is used to get an abbreviated list of all businessEntity keys and
tModel keys that are controlled by the individual associated the credentials passed.

Syntax:

<get_registeredInfo generic="1.0" xmlns="urn:uddi-org:api" >
 <authInfo/>
</get_registeredInfo>

Arguments:

• authInfo: this required argument is an element that contains an authentication token.
Authentication tokens are obtained using the get_authToken API call.

Returns:

Upon successful completion, a registeredInfo structure will be returned, listing abbreviated
business information in one or more businessInfo structures, and tModel information in one or
more tModelInfo structures. This API is useful for determining the full extent of registered
information controlled by a single user in a single call.

Caveats:

If any error occurs in processing this message, a dispositionReport structure will be returned to the
caller in a SOAP Fault. The following error number information will be relevant:

• E_authTokenExpired: signifies that the authentication token value passed in the authInfo
argument is no longer valid because the token has expired.

• E_authTokenRequired: signifies that the authentication token value passed in the
authInfo argument is either missing or is not valid.

SEPTEMBER 6, 2000 PAGE 36

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

save_binding

The save_binding message is used to save or update a complete bindingTemplate structure. This
message can be used to add or update one or more bindingTemplate structures to one or more
existing businessService structures.

Syntax:

<save_binding generic="1.0" xmlns="urn:uddi-org:api" >
 <authInfo/>
 <bindingTemplate/> [<bindingTemplate/>…]
</save_binding>

Arguments:

• authInfo: this required argument is an element that contains an authentication token.
Authentication tokens are obtained using the get_authToken API call.

• bindingTemplate: one or more complete bindingTemplate structures. The order in which
these are processed is not defined. To save a new bindingTemplate, pass a
bindingTemplate structure with an empty bindingKey attribute value.

Behavior:

Each bindingTemplate structure passed must contain a serviceKey value that corresponds to a
registered businessService controlled by the same person saving the bindingTemplate data. The
net effect of this call is to establish the parent businessService relationship for each
bindingTemplate affected by this call. If the same bindingTemplate (determined by matching
bindingKey value) is listed more than once, any relationship to the containing businessService will
be determined by processing order, which is determined by the position of the bindingTemplate
data in first to last order.

Using this message it is possible to move an existing bindingTemplate structure from one
businessService structure to another by simply specifying a different parent businessService
relationship. Changing a parent relationship in this way will cause two businessService structures
to be affected.

If a bindingTemplate being saved contains a hostingRedirector element, and that element
references a bindingTemplate that itself contains a hostingRedirector element, an error condition
(E_invalidKeyPassed) will be generated.

Returns:

This API returns a bindingDetail message containing the final results of the call that reflects the
newly registered information for the effected bindingTemplate structures.

Caveats:

If any error occurs in processing this message, a dispositionReport structure will be returned to the
caller in a SOAP Fault. The following error number information will be relevant:

• E_authTokenExpired: signifies that the authentication token value passed in the authInfo
argument is no longer valid because the token has expired.

SEPTEMBER 6, 2000 PAGE 37

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

• E_authTokenRequired: signifies that the authentication token value passed in the
authInfo argument is either missing or is not valid.

• E_keyRetired: signifies that the request cannot be satisfied because one or more
uuid_key values specified has previously been hidden or removed by the requester. This
specifically applies to the tModelKey values passed.

• E_invalidKeyPassed: signifies that the request cannot be satisfied because one or more
uuid_key values specified is not a valid key value, or that a hostingRedirector value
references a bindingTemplate that itself contains a hostingRedirector value.

• E_userMismatch: signifies that one or more of the uuid_key values passed refers to data
that is not controlled by the individual who is represented by the authentication token.

• E_operatorMismatch: signifies that one or more of the uuid_key values passed refers to
data that is not controlled by the Operator Site that received the request for processing.

• E_accountLimitExceeded: signifies that user account limits have been exceeded.

SEPTEMBER 6, 2000 PAGE 38

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

save_business

The save_business message is used to save or update information about a complete
businessEntity structure. This API has the broadest scope of all of the save_x API calls in the
publisher API, and can be used to make sweeping changes to the published information for one or
more businessEntity structures controlled by an individual.

Syntax:

<save_business generic="1.0" xmlns="urn:uddi-org:api" >
 <authInfo/>
 <businessEntity/> [<businessEntity/>…] | <uploadRegister/> [<uploadRegister/>…]
</save_business>

Arguments: Only one type of businessEntity or uploadRegister arguments may be
passed in a given save_business message. Any number of businessEntity or
uploadRegister values can be passed in a single save (up to an Operator Site imposed
policy limit), but the two types of parameters should not be mixed.

• authInfo: this required argument is an element that contains an authentication token.
Authentication tokens are obtained using the get_authToken API call.

• businessEntity: one or more complete businessEntity structures can be passed. These
structures can be obtained in advance by using the get_businessDetail API call or by any
other means.

• uploadRegister: one or more resolvable HTTP URL addresses that each point to a single
and valid businessEntity or businessEntityExt structure. This variant argument allows a
registry to be updated to reflect the contents of an XML document that is URL
addressable. The URL must return a pure XML document that only contains a
businessEntity structure as its top-level element, and be accessible using the standard
HTTP-GET protocol.

Behavior:

If any of the uuid_key values within in a businessEntity structure (e.g. any data with a key value
regulated by a businessKey, serviceKey, bindingKey, or tModelKey) is passed with a blank value,
this is a signal that the data that is so keyed is being inserted. This does not apply to structures
that reference other keyed data, such as tModelKey references within bindingTemplate or
keyedReference structures, since these are references.

To make this function perform an update to existing registered data, the keyed entities
(businessEntity, businessService, bindingTemplate or tModel) should have uuid_key values that
correspond to the registered data.

Data can be deleted with this function when registered information is different than the new
information provided. One or more businessService and bindingTemplate structures that are
found in the controlling Operator Site but are missing from the businessEntity information provided
in or referenced by this call will be deleted from the registry after processing this call.

Data that is contained within one or more businessEntity can be rearranged with this function when
data passed to this function redefines parent container relationships for other registered
information. For instance, if a new businessEntity is saved with information about a
businessService that is registered already as part of a separate businessEntity, this will result in the

SEPTEMBER 6, 2000 PAGE 39

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

businessService being moved from its current container to the new businessEntity. This only
applies if the same party controls the data referenced.

If the uploadRegister URL method is used to save data, the Operator Site is required to make sure
that the URL used is included in the discoveryURLs collection within the businessEntity structure.
If the URL passed to do the upload is not contained in this collection, it will be added automatically
with a useType value set to the type of structure (either businessEntity or businessEntityExt) found
in the file used to perform the upload.

If the file located by the uploadRegister URL value is an extended business entity
(businessEntityExt) structure, only the businessEntity data found within that structure will be
registered.

If the businessEntity method is used to save data (e.g not via an uploadRegister URL reference),
then the Operator Site will create a URL that is specific to the Operator Site that can be used to get
(via HTTP-GET) the businessEntity structure being registered. This information will be added to (if
not present already) the discoveryURLs collection automatically with a useType value of
“businessEntity".

Returns:

This API returns a businessDetail message containing the final results of the call that reflects the
new registered information for the businessEntity information provided.

Caveats:

If any error occurs in processing this message, a dispositionReport structure will be returned to the
caller in a SOAP Fault. The following error number information will be relevant:

• E_authTokenExpired: signifies that the authentication token value passed in the authInfo
argument is no longer valid because the token has expired.

• E_authTokenRequired: signifies that the authentication token value passed in the
authInfo argument is either missing or is not valid.

• E_keyRetired: signifies that the request cannot be satisfied because one or more
uuid_key values specified has previously been hidden or removed by the requester. This
specifically applies to the tModelKey values passed.

• E_invalidKeyPassed: signifies that the request cannot be satisfied because one or more
uuid_key values specified is not a valid key value. This includes any tModelKey
references that are unknown.

• E_invalidURLPassed: signifies that an error occurred with one of the uploadRegister
URL values.

• E_userMismatch: signifies that one or more of the uuid_key values passed refers to data
that is not controlled by the individual who is represented by the authentication token.

• E_operatorMismatch: signifies that one or more of the businessKey values passed refers
to data that is not controlled by the Operator Site that received the request for processing.

• E_invalidCategory (20000): signifies that the given keyValue did not correspond to a
category within the taxonomy identified by a tModelKey value within one of the
categoryBag elements provided.

SEPTEMBER 6, 2000 PAGE 40

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

• E_categorizationNotAllowed (20100: Restrictions have been placed by the taxonomy
provider on the types of information that should be included at that location within a
specific taxonomy. The validation routine chosen by the Operator Site has rejected this
businessEntity for at least one specified category.

• E_accountLimitExceeded: signifies that user account limits have been exceeded.

SEPTEMBER 6, 2000 PAGE 41

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

save_service

The save_service message adds or updates one or more businessService structures.

Syntax:

<save_service generic="1.0" xmlns="urn:uddi-org:api" >
 <authInfo/>
 <businessService/> [<businessService/>…]
</save_service>

Arguments:

• authInfo: this required argument is an element that contains an authentication token.
Authentication tokens are obtained using the get_authToken API call.

• businessService: one or more complete businessService structures can be passed.
These structures can be obtained in advance by using the get_serviceDetail API call or by
any other means.

Behavior:

Each businessService structure passed must contain a businessKey value that corresponds to a
registered businessEntity controlled by the same making the save_service request.. If the same
businessService, or within these, bindingTemplate (determined by matching businessService or
bindingKey value) is contained in more than one businessService argument, any relationship to the
containing businessEntity will be determined by processing order – which is determined by first to
last order of the information passed in the request. Using this message it is possible to move an
existing bindingTemplate structure from one businessService structure to another, or move an
existing businessService structure from one businessEntity to another by simply specifying a
different parent businessEntity relationship. Changing a parent relationship in this way will cause
two businessEntity structures to be affected.

Returns:

This API returns a serviceDetail message containing the final results of the call that reflects the
newly registered information for the effected businessService structures.

Caveats:

If any error occurs in processing this message, a dispositionReport structure will be returned to the
caller in a SOAP Fault. The following error number information will be relevant:

• E_authTokenExpired: signifies that the authentication token value passed in the authInfo
argument is no longer valid because the token has expired.

• E_authTokenRequired: signifies that the authentication token value passed in the
authInfo argument is either missing or is not valid.

• E_keyRetired: signifies that the request cannot be satisfied because one or more
uuid_key values specified has previously been hidden or removed by the requester. This
specifically applies to the tModelKey values passed.

SEPTEMBER 6, 2000 PAGE 42

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

• E_invalidKeyPassed: signifies that the request cannot be satisfied because one or more
uuid_key values specified is not a valid key value. This includes any tModelKey
references that are unknown.

• E_userMismatch: signifies that one or more of the uuid_key values passed refers to data
that is not controlled by the individual who is represented by the authentication token.

• E_operatorMismatch: signifies that one or more of the uuid_key values passed refers to
data that is not controlled by the Operator Site that received the request for processing.

• E_invalidCategory (20000): signifies that a keyValue did not correspond to a category
within the taxonomy identified by the tModelKey in the categoryBag data provided.

• E_categorizationNotAllowed (20100: The taxonomy validation routine chosen by the
Operator Site has rejected the businessService data provided.

• E_accountLimitExceeded: signifies that user account limits have been exceeded.

save_tModel

The save_tModel message adds or updates one or more tModel structures.

Syntax:

<save_tModel generic="1.0" xmlns="urn:uddi-org:api" >
 <authInfo/>
 <tModel/> [<tModel/>…] | <uploadRegister/> [<uploadRegister/>…]
</save_tModel>

Arguments:

• authInfo: this required argument is an element that contains an authentication token.
Authentication tokens are obtained using the get_authToken API call.

• tModel: one or more complete tModel structures can be passed. If adding a new tModel,
the tModelKey value should be passed as an empty element.

• uploadRegister: one or more resolvable HTTP URL addresses that each point to a single
and valid tModel structure. This variant argument allows a registry to be updated to reflect
the contents of an XML document that is URL addressable. The URL must return a pure
XML document that only contains a tModel structure as its top-level element, and be
accessible using the standard HTTP-GET protocol.

Behavior:

If any of the uuid_key values within in a tModel structure (e.g. tModelKey) is passed with a blank
value, this is a signal that the data is being inserted.

To make this function perform an update to existing registered data, the tModelKey values should
have uuid_key values that correspond to the registered data. All tModelKey values that are non-
blank are formatted as urn values (e.g. the characters "uuid:" precede all UUID values for
tModelKey values)

SEPTEMBER 6, 2000 PAGE 43

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

If a tModelKey value is passed that corresponds to a tModel that was previously hidden via the
delete_tModel message, the result will be the restoration of the tModel to full visibility (e.g. available
for return in find_tModel results again).

Returns:

This API returns a tModelDetail message containing the final results of the call that reflects the new
registered information for the effected tModel structures.

Caveats:

If any error occurs in processing this message, a dispositionReport structure will be returned to the
caller in a SOAP Fault. The following error number information will be relevant:

• E_authTokenExpired: signifies that the authentication token value passed in the authInfo
argument is no longer valid because the token has expired.

• E_authTokenRequired: signifies that the authentication token value passed in the
authInfo argument is either missing or is not valid.

• E_keyRetired: signifies that the request cannot be satisfied because one or more
uuid_key values specified has previously been hidden or removed by the requester. This
specifically applies to the tModelKey values passed.

• E_invalidKeyPassed: signifies that the request cannot be satisfied because one or more
uuid_key values specified is not a valid key value. This will occur if a uuid_key value is
passed in a tModel that does not match with any known tModel key.

• E_invalidURLPassed: an error occurred with one of the uploadRegister URL values.

• E_userMismatch: signifies that one or more of the uuid_key values passed refers to data
that is not controlled by the individual who is represented by the authentication token.

• E_operatorMismatch: signifies that one or more of the uuid_key values passed refers to
data that is not controlled by the Operator Site that received the request for processing.

• E_invalidCategory: signifies that the given keyValue did not correspond to a category
within the taxonomy identified by a tModelKey value within one of the categoryBag
elements provided.

• E_categorizationNotAllowed: Restrictions have been placed by the taxonomy provider
on the types of information that should be included at that location within a specific
taxonomy. The validation routine chosen by the Operator Site has rejected this tModel for
at least one specified category.

• E_accountLimitExceeded: signifies that user account limits have been exceeded.

SEPTEMBER 6, 2000 PAGE 44

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

Appendix A: Error code reference

Error Codes

The following list of error codes can be returned in the errno values within a dispositionReport
response to the API calls defined in this programmer’s reference. The descriptions in this section
are general and when used with the specific return information defined in the individual API call
descriptions are useful for determining the reason for failures.

• E_authTokenExpired: (10110) signifies that the authentication token information has
timed out.

• E_authTokenRequired: (10120) signifies that an invalid authentication token was passed
to an API call that requires authentication.

• E_accountLimitExceeded: (10160) signifies that a save request exceeded the quantity
limits for a given structure type. See "Structure Limits" in Appendix D for details.

• E_busy: (10400) signifies that the request cannot be processed at the current time.

• E_categorizationNotAllowed: (20100) Restrictions have been placed by the on the types
of information that can categorized within a specific taxonomy. The data provided does
not conform to the restrictions placed on the category used. Used with cateborization only.

• E_fatalError: (10500) signifies that a serious technical error has occurred while
processing the request.

• E_invalidKeyPassed: (10210) signifies that the uuid_key value passed did not match
with any known key values. The details on the invalid key will be included in the
dispositionReport structure.

• E_invalidCategory (20000): signifies that the given keyValue did not correspond to a
category within the taxonomy identified by the tModelKey. Used with categorization only.

• E_invalidURLPassed: (10220) signifies that an error occurred during processing of a
save function involving accessing data from a remote URL. The details of the HTTP Get
report will be included in the dispositionReport structure.

• E_keyRetired: (10310) signifies that a uuid_key value passed has been removed from
the registry. While the key was once valid as an accessor, and is still possibly valid, the
publisher has removed the information referenced by the uuid_key passed.

• E_languageError: (10060) signifies that an error was detected while processing elements
that were annotated with xml:lang qualifiers. Presently, only the description element
supports xml:lang qualifiacations.

• E_nameTooLong: (10020) signifies that the partial name value passed exceeds the
maximum name length designated by the policy of an implementation or Operator Site.

• E_operatorMismatch: (10130) signifies that an attempt was made to use the publishing
API to change data that is mastered at another Operator Site. This error is only relevant to
the public Operator Sites and does not apply to other UDDI compatible registries.

SEPTEMBER 6, 2000 PAGE 45

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

• E_success: (0) Signifies no failure occurred. This return code is used with the
dispositionReport for reporting results from requests with no natural response document.

• E_tooManyOptions: (10030) signifies that incompatible arguments were passed.

• E_unrecognizedVersion: (10040) signifies that the value of the generic attribute passed
is unsupported by the Operator Instance being queried.

• E_unknownUser: (10150) signifies that the user ID and password pair passed in a
get_authToken message is not known to the Operator Site or is not valid.

• E_unsupported: (10050) signifies that the implementor does not support a feature or API.

• E_userMismatch: (10140) signifies that an attempt was made to use the publishing API
to change data that is controlled by another party. In certain cases, E_operatorMismatch
takes precedence in reporting an error.

dispositionReport overview

Errors that are not reported by way of SOAP Faults are reported using the dispositionReport
structure. This structure can be used to signal success for asynchronous requests as well.

Success Reporting with the dispositionReport structure

The general form of a success report is:

<?xml version="1.0" encoding="UTF-8" ?>

<Envelope xmlns="http://schemas.xmlsoaporg.org/soap/envelope/">
<Body>

<dispositionReport generic="1.0" operator="OperatorUrl"
xmlns="urn:uddi-org:api" >

 <result errno="0" >
 <errInfo errCode=“E_success" />
 </result>

</dispositionReport>
</Body>
</Envelope>

Error reporting with the dispositionReport structure

All application errors are communicated via the use of the SOAP FAULT structure. The general
form of an error report is:

<?xml version="1.0" encoding="UTF-8" ?>

<Envelope xmlns="http://schemas.xmlsoaporg.org/soap/envelope/">
<Body>
 <Fault>
 <faultcode>Client</faultcode>

<faultstring>Client Error</faultstring>

SEPTEMBER 6, 2000 PAGE 46

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

<detail>
<dispositionReport generic="1.0" operator="OperatorUrl"

 xmlns="urn:uddi-org:api" >
 <result errno="10050" >
 <errInfo errCode=“E_notSupported">
 The findQualifier value passed is unrecognized.
 </errInfo>
 </result>

</dispositionReport>
 </detail>
 </Fault>
</Body>
</Envelope>

Multiple result elements may be present within the dispositionReport structure, and can be used to
provide very detailed error reports for multiple error conditions. The number of result elements
returned within a disposition report is implementation specific. In general it is permissible to return
an error response as soon as the first error in a request is detected.

SEPTEMBER 6, 2000 PAGE 47

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

Appendix B: SOAP usage details

This appendix covers the SOAP specific conventions and requirements for Operator Sites.

Support for SOAPActionSupport for SOAPAction

In version 1, the SOAPAction HTTP Header is required. The value passed in this HTTP Header
must be an empty string that is surrounded by double quotes. Example:

POST /get_BindingDetail HTTP/1.1
Host: www.someOperator.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: ""

Support for SOAP ActorSupport for SOAP Actor

In version 1 of the UDDI specification, the SOAP Actor feature is not supported. Operator Sites will
reject any request that arrives with a SOAP Actor attribute.

Support for SOAP encodingSupport for SOAP encoding

In version 1 of the UDDI specification, the SOAP encoding feature (section 5) is not supported.
Operator Sites will reject any request that arrives with a SOAP encoding attribute.

Support for SOAP FaultSupport for SOAP Fault

SOAP Fault applies when unknown API references invoked, etc. Applegate specific errors will be
handled via the dispositionReport API within SOAP Fault structures (see appendix A). The
following SOAP fault codes are used:

• VersionMismatch: An invalid namespace reference for the SOAP envelope element was
passed. The valid namespace value is “http://www.xmlsoap.org/soap/envelope/".

• MustUnderstand: A SOAP header element was passed to an Operator Site. Operator
Sites do not support any SOAP headers, and will return this error whenever a SOAP
request is received that contains any Headers element.

• Client: A message was incorrectly formed or did not contain enough information to
perform more exhaustive error reporting.

SupSupport for SOAP Headersport for SOAP Headers

In version 1 of the UDDI specification, SOAP Headers are not supported. Operator Sites are
permitted to ignore any headers received. SOAP headers that have the must_understand attribute
set to true will be rejected with a SOAP fault - MustUnderstand.

Document encoding conventions Document encoding conventions –– default namespace support default namespace support

Operator Sites are required to support the use of the default namespaces in SOAP request and
response documents as shown in the following HTTP example:

SEPTEMBER 6, 2000 PAGE 48

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

POST /get_bindingDetail HTTP/1.1

Host: www.someoperator.org

Content-Type: text/xml; charset="utf-8"

Content-Length: nnnn

SOAPAction: ""

<?xml version="1.0" encoding="UTF-8" ?>

<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
 <Body>
 <get_bindingDetail generic="1.0"
 xmlns="urn:uddi-org:api">
…

UTF-8 to Unicode: SOAP listener behavior

The decision to use the UTF-8 encoding in all requests simplified the number of encoding
variations that need to be handled within the XML interchanges used in this API specification.
However, byte ordering and conversion issues can still arise. This section describes the behavior
of the SOAP listeners that run at Operator Sites in regards to the way they convert data received
into XML encoded in Unicode.

UTF-8 allows data to be transmitted with an optional three-position byte order mark (BOM)
preceding the XML data. This BOM does not contain information that is useful for decoding the
contents, but tells the receiving program the order that bytes within double-byte pairs occur within
the data. Further analysis can then be peformed to determine whether the XML received contains
ASCII or Unicode characters. The BOM is not required to perform this analysis however, and it is
safe for Operator Sites to remove the BOM prior to processing messages received.

Operator Sites must be prepared to accept messages that contain Byte Order Marks, but the BOM
is not required to process SOAP messages successfully.

Data returned by all of the messages defined in this specification will not contain a BOM, and will
be encoded as UTF-8 XML data.

SEPTEMBER 6, 2000 PAGE 49

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

Appendix C: XML Usage Details

This appendix explains the specifics of XML conventions employed across all UDDI Operator
Sites. Implementations that desire to remain compliant with the behaviors of Operator Sites should
follow these same conventions.

Use of multiple languages in the description elements.

Many of the messages defined in this programmers interface specification contain an element
named description. Multiple descriptions are allowed to accommodate multiple language
descriptions. These description elements are also permitted to be sent without an xml:lang
attribute qualifier.

Only one description element is allowed to be passed to a save_xx API call without an xml:lang
attribute qualifier. Elements passed in this way will be assigned the default language code of the
registering party. This default language code is established at the time that publishing credentials
are established with an individual Operator Site.

If more than one description element is sent in a document being stored, only the first description
element in a particular structure may be sent without a xml:lang attribute qualifier. All subsequent
description peers must contain an xml:lang qualifier.

Valid Language Codes

The valid values for language codes are to be specified as ISO language codes. Values for these
codes and translation to other common language code sets can be found at:

 http://www.unicode.org/unicode/onlinedat/languages.html

Only one description element is allowed for each language code used at any given container
level.

Default Language Codes

A default ISO language code will be determined for a publisher at the time that a party establishes
permissions to publish at a given Operator Site or implementation. This default language code will
be applied to any description values that are provided with no language code.

On data returned via the SOAP interface, all descriptions will contain xml:lang qualifications.

ISSUE for Validation: XML namespace declaration

For use with the xml:lang language qualifiers, documents that contain this attribute will declare the
xml namespace as:

 xmlns:xml="http://www.w3.org/1999/XMLSchema"

This will occur at the top level of the instance document (in the Envelope element)

SEPTEMBER 6, 2000 PAGE 50

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

Support for XML Encoding

All messages to and from the Operator Site shall be encoded using the UTF-8 encoding, and all
such messages shall have the 'encoding="UTF-8"' attribute on the initial line. Other encoding
name variants, such as UTF8, UTF_8, etc. shall not be used. Therefore, to be explicit, the initial
line shall be:

 <?xml version="1.0" encoding="UTF-8" ?>

SEPTEMBER 6, 2000 PAGE 51

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

Appendix D: Security model in the publishers API

The Publishers API describes the messages that are used to control the content contained within
an Operator Site, and can be used by compliant non-operator implementations that adhere to the
behaviors described in this programmers reference specification.

Achieving wire level privacy: All methods are secured via SSL

All calls made to Operator Sites that use the messages defined in the publishers API will be
transported using SSL encryption. Operator Sites will each provide a service description that
exposes a bindingTemplate that makes use of HTTPS and SSL to secure the transmission of data.

Authentication

Each of the calls in the publishers API that change information at a given Operator Site requires the
use of an opaque authentication token. These tokens are generated by or provided by each
Operator Site independently, and are passed from the caller to the Operator Site in the element
named authInfo.

These tokens are meaningful only to the Operator Site that provided them and are to be used
according to the published policies of a given Operator Site.

Each party who has been granted publication access to a given Operator Site will be provided a
token by the site. Obtaining this token is Operator Site specific.

Establishing credentials

Before any party can publish data within an Operator Site, credentials and permission to publish
must be established with the individual operator. Generally, you will only need to interact with one
Operator Site because all data published at any Operator Site is replicated automatically to all
other Operator Sites. Establishing publishing credentials involves providing some verifiable
identification information, contact information and establishing security credentials with the
individual Operator Site. The specifics of these establishing credentials is Operator Site
dependant, and all valid Operator Sites will provide a Web-based user interface via which to
establish an identity and secure permissions to publish data.

Authentication tokens are not portable

Every registry implementation that adheres to these specifications will establish their own
mechanism for token generation and authentication. The only requirement placed on token
generation for use with the publishers API is that the tokens themselves must be valid string text
that can be placed within the authInfo XML element. Given that binary to string translations are
well understood and in common use, this requirement will not introduce hardships.

Authentication tokens are not required to be valid except at the Operator Site or implementation
from which they originated. These tokens need only have meaning at a single Operator Site or
implementation, and will not be expected to work across sites.

Generating Authentication Tokens

Many implementations are expected to require a login step. The get_authToken message is
provided to accommodate those implementations that desire a login step. Security schemes that

SEPTEMBER 6, 2000 PAGE 52

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

are based on the convention of exchanging User ID and password credentials fall into this
category. For implementations that desire this kind of security, the get_authToken API is provided
as an optional means for generating a temporary authentication token.

Certificate based authentication and similar security mechanisms do not require this additional step
of “logging in” and can directly pass compatible authentication token information (such as a
certificate value) within the authInfo element provided on each of the publishers API messages. If
certificate based authentication or similar security is employed by the choice of a given Operator
Site, the use of the get_authToken and discard_authToken messages is optional.

Per-account space limits

Operator Sites may impose limits on the amount of data that can be published by a given user.
The initial limits for a new user are:

• businessEntity: 1 per user account

• businessService: 4 per businessEntity

• bindingTemplate: 2 per businessService

• tModel: 10 per user account

Individual user accounts can negotiate per-account limits with the Operator Site.

SEPTEMBER 6, 2000 PAGE 53

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

Appendix E: Search Qualifiers

The inquiry API functions find_binding, find_business, find_service, and find_tModel each will
accept an optional element named findQualifiers. This element argument is provided as a means
to allow the caller to override default search behaviors.

General form of search qualifiers

The general form of the findQualifiers structure is:

<findQualifiers>
 <findQualifier>fixedQualifierValue</findQualifier>
 [<findQualifier>fixedQualifierValue</findQualifier> …]
</findQualifiers>

Search Qualifiers enumerated

The value passed in each findQualifier element represents the behavior change desired by the
caller. These values must come from the following list of qualifiers:

• exactNameMatch: signifies that leftmost name match behavior should be overridden.
When this behavior is specified, only entries that exactly match the entry passed in the
name argument will be returned.

• caseSentiveMatch: signifies that the default case-insensitive behavior of a name match
should be overridden. When this behavior is specified, case is relevant in the search
results and only entries that match the case of the value passed in the name argument will
be returned.

• sortByNameAsc: signifies that the result returned by a find_x or get_x inquiry call should
be sorted on the name field in ascending alphabetic sort order. This sort is applied prior to
any truncation of result sets. Only applicable on queries that return a name element in the
topmost detail level of the result set. If no conflicting sort qualifier is specied, this is the
default sort order for inquiries that return name values at this topmost detail level.

• sortByNameDesc: signifies that the result returned by a find_x or get_x inquiry call should
be sorted on the name field in descending alphabetic sort order. This sort is applied prior
to any truncation of result sets. Only applicable on queries that return a name element in
the topmost detail level of the result set. This is the reverse of the default sort order for this
kind of result.

• sortByDateAsc: signifies that that the result returned by a find_x or get_x inquiry call
should be sorted based on the date last updated in ascending chronologic sort order
(earliest returns first). If no conflicting sort qualifier is specified, this is the default sort order
for all result sets. Sort qualifiers involving date are secondary in precedence to the
sortByName qualifiers. This causes sortByName elements to be sorted within name by
date, oldest to newest.

• sortByDateDesc: (default) signifies that the result returned by a find_x or get_x inquiry
call should be sorted based on the date last updated in descending chronologic sort order
(most recent change returns first). Sort qualifiers involving date are secondary in
precedence to the sortByName qualifiers. This causes sortByName elements to be sorted
within name by date, oldest to newest.

SEPTEMBER 6, 2000 PAGE 54

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

At this time, these are the only qualifiers defined. Operator Sites may define more search qualifier
values than these – but all Operator Sites and fully compatible software must support these
qualifiers and behaviors.

Search Qualifier Precedence

Precedence of search qualifiers, when combined is as follows:

1. exactNameMatch, caseSensitiveMatch: These can be combined but are equal in
precedence.

2. sortByNameAsc, sortByNameDesc: These are mutually exclusive, but equal in
precedence.

3. sortByDateAsc, sortByDateDesc: These are mutually exclusive, but equal in
precedence.

The precedence order is used to determine the proper ordering of results when multiple search
qualifiers are combined.

Locale Details

The US English (EN_US) locale shall be used whenever a string comparison or alphabetic sort is
specified. This applies to sortByNameAsc, sortByNameDesc, exactNameMatch.

SEPTEMBER 6, 2000 PAGE 55

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

Appendix F: Response message reference

Here we explain each of the response messages. These are technically defined in the uddi API
schema:

• authToken: This structure is return by the optional get_authToken message to return
authentication information. The value returned is used in subsequent calls that require an
authInfo value.

• bindingDetail: This structure is the technical information required to make a method call
to an advertised web service. It is returned in response to the get_bindingDetail message.

• businessDetail: This structure contains full details for zero or more businessEntity
structures. It is returned in response to a get_businessDetail message, and optionally in
response to the save_business message.

• businessDetailExt: This structure allows UDDI compatible registries to define and share
extended information about a businessEntity. Operator Sites support this message but
return no additional data. This structure contains zero or more businessEntityExt
structures. It is returned in response to a get_businessDetailExt message.

• businessList: This structure contains abbreviated information about registered
businessEntity information. This message contains zero or more businessInfo structures.
It is returned in response to a find_business message.

• dispositionReport: This structure is used to report the outcome of message processing
and to report errors discovered during processing. This message contains one or more
result structures. A special case – success – contains only one result structure with the
special errno attribute value of E_success (0).

• registeredInfo: This structure contains abbreviated information about all registered
businessEntity and tModel information that are controlled by the party specified in the
request. This message contains one or more businessInfo structures and zero or more
tModelInfo structures. It is returned in response to a get_registeredInfo message.

• serviceDetail: This structure contains full details for zero or more businessService
structures. It is returned in response to a get_serviceDetail message, and optionally in
response to the save_binding and save_service messages.

• serviceList: This structure contains abbreviated information about registered
businessService information. This message contains zero or more serviceInfo structures.
It is returned in response to a find_service message.

• tModelDetail: This structure contains full details for zero or more tModel structures. It is
returned in response to a get_tModelDetail message, and optionally in response to the
save_tModel message.

• tModelList: This structure contains abbreviated information about registered tModel
information. This message contains zero or more tModelInfo structures. It is returned in
response to a find_tModel message.

SEPTEMBER 6, 2000 PAGE 56

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

Appendix G: redirection via hostingRedirector element

One of the main benefits of using a public Operator Site instance of an UDDI registry is to provide a
single point of reference for determining the correct location to send a business service request to
a remote web service. In general, the controller of a particular instance of bindingTemplate
structure can be assured that by keeping the registered copy pointing to the proper server or
invocation address, special conditions such as disaster recovery to a secondary site can be
handled with a minimum of service disruption for customers or partners. The same holds true for
those who choose to use a registry that is compatible with the UDDI API, but to a lesser degree.

In many cases, the API specified in the get_bindingDetail message is straightforward. Once a
business or application knows of a service that needs to be invoked, the bindingTemplate
information for this service can be cached until needed. In the event that the cached information
fails at the time the partner web service is actually invoked (e.g. the accessPoint information in the
cached bindingTemplate structure is used to invoke a remote partner service), the application can
use the bindingKey in the cached information to get a fresh copy of the bindingTemplate
information. This cached approach serves to prevent needless round trips to the registry.

Special situations requiring the hostingRedirector

Two special needs arise that cannot be directly supported by the accessPoint information in a
bindingTemplate. These are:

• Third Party Hosting of Technical Web Services: A business chooses to expose a
service that is actually hosted at a remote or third party site. Application Service Providers
and Network Market Makers are common examples of this situation. In this situation, it is
the actual third party that needs to control the actual value of the binding information.

• Use specific access control to binding location: In other situations, such as situation
specific redirection based on the identity of the caller, or even time-of-day routing, it is
necessary to provide the actual contact point information for the remote service in a more
dynamic way than the cached accessPoint data would support.

For these cases, the bindingTemplate structures contain an alternative data element called
hostingRedirector. The presence of a hostingRedirector element is mutually exclusive with the
accessPoint information. This makes it possible to tell which method of gaining the actual
bindingTemplate information that contains the accessPoint data to use.

Using the hostingRedirector data

When a bindingTemplate returned by UDDI registry contains a hostingRedirector element, the
programmer uses this information to locate the actual bindingTemplate for the hosted service. The
content of the hostingRedirector element is a bindingKey reference that refers to another
bindingTemplate that contains the address of a redirector service that will respond to a
get_bindingDetail message. The argument that gets passed to this message is the original
bindingTemplate uuid_key value for the redirected service. The bindingTemplate returned by this
redirected call must have a accessPoint element in it – this being the actual binding information for
the redirected web service request

Stepwise overview

1. A business registers a bindingTemplate A for a remotely hosted or redirected business service
S. This bindingTemplate contains a bindingKey value Q that references a second

SEPTEMBER 6, 2000 PAGE 57

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

bindingTemplate B. The bindingTemplate B is typically controlled by the organization that
hosts the redirection service. This bindingTemplate B contains an accessPoint element that
points to the actual hostingRedirector service R.

2. A program that wants to call the service S that is registered in step one gets the binding
information for the advertised service. This bindingTemplate information contains a
hostingRedirector element with the bindingKey K for the bindingTemplate B.

3. The programmer takes the bindingKey K for and issues a get_bindingDetail message against
the UDDI registry that the original bindingTemplate A came from. This returns the data for
bindingTemplate B. The programmer now has the address of the service that implements the
redirection. This information is in the accessPoint element found in bindingTemplate B. This
service, to be compliant, knows how to respond to a get_bindingDetail message.

4. Using the original binding key Q and issues a get_bindingDetails to the redirector service R.
This service is responsible for returning the actual binding information for the redirected
business service S or returning an error. The programmer has the choice of caching this
bindingTemplate if desired.

Using this algorithm, an organization that hosts services for other businesses to use can control the
information that is used to actually access the hosted service. This not only provides this hosting
organization with the ability to manage situations such as disaster recovery locations, but also lets
them specify the actual URL that is used to make a call to the actual business service. This URL
can be keyed specifically to the caller, or can be a general location for the hosted or redirected
service.

In any case, the original caller is able to find the technical web service (bindingTemplate)
advertised within the actual business partner’s data without having to know that any redirection
occurred.

SEPTEMBER 6, 2000 PAGE 58

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

Appendix H: Details on the validate_categorization call

Whenever save_business, save_service or save_tModel are called, all contents of any included
categoryBag information may be checked to see that it is properly coded to match existing
categories. The reason given for this is to maximize consistency across category based searches.

Operator specific policy allows interpretation of various error returns to result in non-specified
behavior. Consult the operations policy of the operator at which you register data to understand
the specific behaviors of any validation performed.

validate_categorization

The validate_categorization service performs two functions. It is used to verify that a specific
category (keyValue) exists within the given taxonomy. The service also optionally restricts the
entities that may be classified within the category.

Syntax:

<validate_categorization generic="1.0" xmlns="name_qualifier" >
 <tModelKey/>
 <keyValue/>
 [<businessEntity/> | <businessService/> | <tModel/>]
</validate_categorization>

Arguments: The optional businessEntity, businessService or tModel parameters are
mutually exclusive.

• tModelKey: The identifier of a registered tModel that is used as a namespace qualifier
that implies a specific taxonomy.

• keyValue: The category identifier9 of the category within the identified taxonomy.

• businessEntity: (optional) The businessEntity structure being categorized

• businessService: (optional) The business service structure being categorized.

• tModel: (optional) The tModel structure being categorized.

Behavior:

To validate categorizations of registry entries, it is sufficient to verify the category identified by the
keyValue parameter exists within the taxonomy identified by the tModelKey.

Optionally, a businessEntity, businessService, or tModel may be passed with the required values.
This additional information may be used by the taxonomy validation service to verify that the entity
is properly classified within this taxonomy category.

9 A category identifier is the specific coded value that designates a category within taxonomy. An example would be NAICS code
247 with the appropriate category identifier being “247”.

SEPTEMBER 6, 2000 PAGE 59

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

Returns:

Upon successful completion, a dispositionReport is returned with a single success indicator.

Caveats:

If any error occurs in processing this message, a dispositionReport structure will be returned to the
caller. The following error number information will be relevant:

• E_invalidKeyPassed: the tModelKey value passed didn’t match any known tModel.

• E_invalidCategory: one of the keyValue values supplied did not correspond to a category
within the taxonomy identified by the tModelKey.

• E_categorizationNotAllowed: The optional businessEntity, businessService, or tModel
provided does not conform to restrictions placed on the given category by the taxonomy
publisher.

SEPTEMBER 6, 2000 PAGE 60

© COPYRIGHT 2000 BY ARIBA, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
AND MICROSOFT CORPORATION.

ALL RIGHTS RESERVED.

 References

This section contains URL pointers to various specifications and other documents that are pertinent
in understanding this specification.

W3C specifications, notes and drafts

• XML 1.0

• XML Schema

• XML namespaces

• SOAP 1.1

UDDI specifications, white-papers and schemas

• UDDI API schema

• UDDI overview

• UDDI technical overview

• UDDI Operators specification

• UDDI.org

• UDDI XML structure reference

