
1

SAML Specification1
2

draft-sstc-ftf3-saml-spec-00.doc3
20 June 20014

5
This document consists of:6

7
draft-sstc-use-domain-05.doc8
draft-sstc-core-09.doc9
draft-orchard-maler-assertion-00.doc10
draft-sstc-protocols-00.doc11
draft-sstc-protocol-model-00.doc12
samlconformance-clause-06.doc13

2

14

NOTATION...515

DOMAIN MODEL: INTRODUCTION..516

STATIC MODEL..517
GLOSSARY (ABRIDGED):...618
PRODUCER CONSUMER MODEL...719
CHANGES FROM PRIOR VERSION OF DOMAIN MODEL ..920
HAL LOCKHART ’S NOTES ON THIS VERSION OF DOMAIN MODEL..921

XML ASSERTION AND REQUEST SYNTAX.. 1122

NAMESPACES...1123
SAML A SSERTION ...1124

Element <SAMLAssertionPackage>... 1225
CLAIMS ...1326

Element <Claims> .. 1327
Element <AssertionRef> .. 1428
Element <Subject> ... 1429
Element <Authenticator> ... 1530
Element <DecisionClaim> ... 1531
Element <AuthenticationClaim> ... 1632
Element <AttributeClaim>... 1633
Element <ExtendedAttributeClaim> ... 1634
Element <AuthorizationClaim> .. 1735

CONDITIONS...1736
Element <Conditions> ... 1737
Element <AudienceRestrictionCondition>.. 1838

ADVICE ...1939
Element <Advice> .. 1940

SAML PROTOCOL ..1941
Element <SAMLQuery> .. 1942
Element <Respond> ... 2043
Element <SAMLQueryResponse>... 2144

SCHEMA EXTENSION ..2145
ALTERNATE ASSERTION STRUCTURE PROPOSAL.. 2246

INTRODUCTION..2247
DEFINITIONS...2248
SECTION CONVENTIONS...2249
XML DESIGN PRINCIPLES ...2250
SAML MESSAGE ARCHITECTURE ..2351

SAMLRequest Element.. 2452
SAMLXQuery Element .. 2553
SubjectAssertionsPackage Element.. 2554
SAMLResponse Element ... 2655
AssertionsPackage Element... 2656

INDIVIDUAL ASSERTION STRUCTURES...2757
AttributeAssertion Element .. 2758
AuthenticationAssertion Element.. 2759
AuthorizationAssertion Element.. 2760
AuthorizationDecisionAssertion Element.. 2861

SUBJECT ELEMENT ...2862

3

SUMMARY OF EXTENSIBILITY FEATURES..2863
SUMMARY OF DIFFERENCES FROM CORE -07...2964
REQUEST METHODS..2965
W3C XML SCHEMA DESIGN PRINCIPLES...3066
SCHEMA AND EXAMPLE DOCUMENTS...3067
COMPLETE ASSERTIONS SCHEMA ..3068

Sample Authorization Decision Assertion ... 3369
Sample Attribute Assertion... 3370
Sample Assertions Repository.. 3471
Sample Extensions #1 – sampleExtensions1.xsd .. 3572
Sample Extensions #2 – sampleExtensions2.xsd .. 3573
Sample Request #1... 3574
Sample Result #1.. 3675
Sample Request #2... 3676
Sample Request #7... 3677

DISCUSSION OF XQUERY..3878
SCHEMA EXTENSION TECHNIQUES...4079

PHB/Core0.7 Class diagram... 4180
SAML REQUEST/RESPONSE PROTOCOLS ... 4281

PROTOCOL MODEL ...4582
PROTOCOL EXCHANGES..4883

Principal-centered direct protocol ... 4884
Principal-centered indirect protocol.. 4985
Pull protocol ... 5086
Push protocol.. 5087
Primary domain session-close protocol... 5188
Secondary domain session-close protocol... 5289

DATA STRUCTURES...5290
AuthnNotification... 5391
AuthnAcknowlegment.. 5392
AuthnRequest .. 5393
AuthnResponse ... 5494
AuthnQuery... 5495
AuthnResult ... 5596
AuthzNotification ... 5597
AuthzAcknowlegment .. 5598
AuthzRequest .. 5699
AuthzResponse.. 56100
AuthzQuery.. 56101
AuthzResult ... 57102
SessionNotification.. 57103
SessionAcknowlegment ... 58104
SessionRequest ... 58105
SessionResponse... 59106
SessionQuery .. 59107
SessionResult .. 59108

PROTOCOL SECURITY CONSIDERATIONS..60109
CONFORMANCE.. 61110

THE SAML CONFORMANCE CLAUSE ..61111
Conformance Nomenclature .. 61112
Mandatory/Optional:... 62113
Extensions:.. 62114
Alternate approaches .. 62115

AUTHORITIES...62116

4

ROLES..63117
BINDINGS..63118
SAML CONFORMANCE PROGRAM...63119
THINGS TO DO (CONFORMANCE)...64120

REFERENCES .. 65121

5

Notation122

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD123
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in124
Key Words for Use in RFC’s to Indicate Requirement Levels (RFC 2119).125

126

Domain Model: Introduction127

This domain model provides a description and categorization of the domain that SAML solves problems in.128
People, software, data, interactions, and behavior are described in the abstract, without binding the specification129
to a particular implementation. It provides a standardized or normalized description of concepts for the130
purposes of further discussion in requirements, use-cases, etc. It covers material out-of-scope for the131
specification in order to show the context that the specification solves problems in. It does not describe132
implementation information such as API details, Schema definitions and data representations.133

134
A typical use-case for this document is: "We all agree what we mean by term x and how entity y creates it and135
entity z consumes it. Is x in scope or out of scope for SAML?". Another use case "We have created an OASIS136
TC committee on functionality A. A is the standardization of term x that is out of scope for SAML".137

138
In the rational unified process, an artifact we are working on is the logical view,139
http://www.rational.com/products/whitepapers/350.jsp#RTFToC2.140

141

Static Model142

Credentials
Collector

System Entity

User

*

*

Sign-on4

Credential

Principal

*

1

1

*

1..* *

Uses4

Authentication
Authority

Attribute
Authority

Authorization
Attributes

Security
Policies

Policy Decision
Point

Policy Enforcement
Point

Resource

Authentication
Assertion

Attribute
Assertion

Authorization
Decision
Assertion

Credentials
Assertion

*

*
*

*
*

*

*

* *

*

*

*

*
*

*
*SAML 1.0

** **

*1

*

*

*

*

143
144
145

6

ISSUES:146
• Should there be a 1:1 relationship between credential and credential assertion, perhaps labeled147

represents?148
• Should all the assertions relationships be 1:* to the authorities to represent that a given assertion can149

only be produced by 1 given authority, or left as *:* to represent that a given assertion can be produced150
by many authorities.151

• Should there be explicit (perhaps *:*) relationships between the authorities?152
• What names for relationships should be used?153

Glossary (abridged):154

155
Notation: Definitions that have been agreed upon by the use case subgroup are denoted(Conf)156

157
Assertion: TBD158

159
Attribute Authority: (Conf) A system entity that produces Attribute assertions, based upon TBD inputs.160

161
Attribute Assertion: An assertion about attributes of a principal.162

163
Authentication – (from glossary with principal added) (Conf) Authentication is the process of confirming an164
entity’s asserted principal identity with a specified, or understood, level of confidence. [7]165
The process of verifying a principal identity claimed by or for a system entity. [12]166

167
Authentication Assertion: Data vouching for the occurrence of an authentication of a principal at a particular168
time using a particular method of authentication. Synonym(s): name assertion.169

170
Authentication Authority: (Conf) A system entity that verifies credentials and produces authentication171
assertions172

173
Authorization Attributes: (Conf) Attributes about a principal which may be useful in an authorization decision174
(group, role, title, contract code,...).175

176
Authorization Decision Assertions : (from glossary) In concept an authorization assertion is a statement of177
policy about a resource, such as:178
the user "noodles" is granted "execute" privileges on the resource "/usr/bin/guitar.”179

180
Credential: (Conf) Data that is transferred or presented to establish a claimed principal identity.181

182
Policy Decision Point : (from glossary, access control decision) The place where a decision is arrived at as a183
result of evaluating the requester’s identity, the requested operation, and the requested resource in light of184
applicable security policy. (surprisingly enough, not explicitly defined in [10])185

186
Policy Enforcement Point : (from glossary, access enforcement function) The place that is part of the access187
path between an initiator and a target on each access control request and enforces the decision made by the188
Access Decision Function [10].189

190

7

Principal, or Principle Identity: (Conf) An instantiation of a system entity within the security domain.191

Resource : (from glossary) Data contained in an information system (e.g. in the form of files, info in memory,192
etc); or a service provided by a system; or a system capability, such as processing power or communication193
bandwidth; or an item of system equipment (i.e., a system component--hardware, firmware, software, or194
documentation); or a facility that houses system operations and equipment. (definition from [1]) 195

Security Domain: TBD196
197

Security Policies: (from glossary) A set of rules and practices specifying the “who, what, when, why, where,198
and how” of access to system resources by entities (often, but not always, people).199

200
Sign-on: The process of presenting credentials to an authentication authority for requesting access to a resource201

202
System Entity: (from glossary) (Conf) An active element of a system--e.g., an automated process, a subsystem,203
a person or group of persons--that incorporates a specific set of capabilities. (definition from [1]) 204

205
User: (Conf) A human individual that makes use of resources for application purposes. This may also be non-206
human such as parties and processes.207

208
209

Producer Consumer model210

Authentication
Authority

Attribute
Authority

Policy
Decision

Point

Policy
Enforcement

Point

Credentials

Authentication
Assertion

System
Entity

Attribute
Assertion

Authorization
Decision
Assertion

SAML

Policy Policy Policy

Credentials
Collector

Credentials
Assertion

Application
Request

211
212

8

213
214

This diagram provides a view of the elements of the SAML problem space that is focused on the architectural215
entities and their inputs and outputs. Its main purpose is to achieve a sufficient commonality of understanding216
the meanings of the various terms used to allow productive discussion. The names have been chosen either to217
be consistent with standard usage in the field or suggestive of their purpose or action, in many cases their exact218
nature or contents are not fully agreed upon. Although the diagram is intended to be neutral on the SAML219
design, the choice of which elements to include and which to leave out anticipates likely elements of the design.220

221
This diagram should not be interpreted as describe message flows or a single processing flow. It merely222
attempts to describe which entities are capable of producing certain outputs and which entities may make use of223
certain inputs. For example, all of the following are consistent with this diagram:224

• A PDP collects various assertions from their sources in order to make a policy decision225
• An Attribute Assertion is returned to the System Entity that initiated the interaction (lower left) who226

presents it as required227
• A PDP makes a decision without the use of any assertions228

229
All of the entities shown may be a part of distinct security domains, or some of them may be in the same230
domain. Typically there will only be two or three security domains involved. Common groupings include:231

• Combined Authentication Authority and Attribute Authority232
• Combined PEP and PDP233
• All combined except for PEP234

235
236

Many of the components can have multiple instances. For example, there can be multiple Attribute Authorities237
or multiple PDPs. This may introduce relationships not shown in the diagram, for example, a PDP might238
provide assertions to another PDP.239

240
There is an asymmetry between input and output. The outputs that are standardized have the names shown, by241
definition. The entities may or may not use the inputs identified for any particular action. This is represented by242
the use of solid and dashed lines respectively.243

244
The entities that have an associated policy store, are assumed to use that policy to modulate the outputs they245
produce. This policy store is assumed to be non-volatile and capable of being administered in some way. The246
unlabeled arrows at the top represent other inputs and outputs, not specified by SAML. For inputs these fall into247
two categories: 1) inputs which have the same semantics as SAML defined Assertions, but are in unspecified248
format and 2) items which are not specified by SAML at all. An example of #1 is an X.509 Attribute249
Certificate. An example of #2 is the current date and time.250

251
The diagram anticipates the design of SAML by identifying only the security assertions that could be output by252
these entities. SAML will also have protocol messages to send and receive these assertions and will make use of253
existing communications protocols to transmit these assertions.254

255
The central gray box labeled SAML indicates which assertions may be specified by SAML. In particular, the256
inclusion of Credentials Assertions and Sessions Assertions has not been settled.257
The definitions of these items can be found elsewhere.258

9

259
The following comments cover points that may not be completely evident.260

261
The System Entity in the diagram is the one requesting some action that will ultimately be permitted or denied.262
As a preliminary step it may provide credentials to authenticate itself.263
The Credentials are not merely limited to a password, but might involve a sequence of messages exchanges, for264
example in a Public Key authentication protocol.265

266
The Credentials Collector is an entity that can front-end the authentication process and pass to the267
Authentication Authority the information necessary for it to authenticate the System Entity. This is similar to268
the functionality provided by the RADIUS protocol.269

270
The Authorization Decision Assertion might simply provide a yes/no response, or it might provide specific271
information about why access is denied, or it might provide statements of policy.272

273
The Policy Enforcement Point is defined to have no policy, but to act directly on the contents of the274
Authorization Decision Assertion.275

Changes from Prior Version of Domain Model276

- Converted diagram from Together to Visio. This should make it more readable. I don't think powerpoint is an277
effective engineering diagram tool for the details that we want to represent, imho.278
- Removed Sessions279
- Changed authorization assertion to Attribute assertion280
- Added indicator (grey area) to show SAML.281
- removed reference to life cycle management282
- made sure terminology between prod/cons model matches283
- set principal/entity cardinalities to 1 to represent that a principal represents 1 entity284
- set credential/principal cardinality to 1 to represent that a credential represents 1 principal285
- set resource/PEP cardinality to 1 to represent that a given resource is policed by 1 PEP286
- cardinalities all represented, most currently at *. I need specific feedback on each of the links hence...287
- I added a number of ISSUES on cardinality and relationships to the static model. Feedback would be great.288
- Updated definition of User in static model glossary289
- Removed Authorization Assertion from glossary290
- Removed log-off from glossary291
- Removed Session from the pubcon model.292

Hal Lockhart’s Notes on this Version of Domain Model293
I did not understand the following or wasn't sure exactly what to do from the various minutes:294
- what to do about authorization attributes. I noted some tendency to want to remove, but it seems to me that295
the association between attributes and the authorization authority seems relevent. Need resolution on keep or296
remove.297
- The mention of a life-cycle model or diagram. I wasn't sure if this was meant to be a UML state transition298
diagram (assertion created, revoked, etc), a UML sequence diagram, a yourdon data flow diagram.299
- The mention that the domain model has containment and "other" relationships. There are no300
containment/aggregation relationships listed, only a single inheritance (isa) relationship. So this confused me301
and I did nothing.302

10

- I wasn't sure what to do about the domain glossary. I recall discussion about nuking it, but I didn't see any303
particular action to that regard.304
- I didn't see a decision to change security policies.305

11

XML Assertion and Request Syntax306

Note: this section corresponds to draft-sstc-core-08.doc.307

Namespaces308

In this document, certain namespace prefixes represent certain namespaces.309

All SAML protocol elements are defined using XML schema [XML-Schema1][XML-Schema2]. For clarity310
unqualified elements in schema definitions are in the XML schema namespace:311

xmlns="http://www.w3.org/2001/XMLSchema"312

References to Security Assertion Markup Language schema defined herein use the prefix “s0” and are in the313
namespace:314

xmlns:s0="http://www.oasis.org/tbs/1066-12-25/"315

This namespace is also used for unqualified elements in message protocol examples.316

The SAML schema specification uses some elements already defined in the XML Signature namespace. The317
“XML Signature namespace” is represented by the prefix ds and is declared as:318

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"319

The “XML Signature schema” is defined in [XML-SIG-XSD] and the <ds:KeyInfo> element (and all of its320
contents) are defined in [XML-SIG]§4.4.321
<?xml version="1.0" encoding="UTF-8"?>322
<schema323
 targetNamespace="http://www.oasis.org/tbs/1066-12-25/"324
 xmlns="http://www.w3.org/2001/XMLSchema"325
 xmlns:s0="http://www.oasis.org/tbs/1066-12-25/"326
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"327
 elementFormDefault="unqualified">328

SAML Assertion329
SAML specifies several different types of assertion for different purposes, these are:330

Authentication Assertion331
An authentication assertion asserts that the issuer has authenticated the specified subject.332

Attribute Assertion333
An attribute assertion asserts that the specified subject has the specified attribute(s). Attributes may be334
specified by means of a URI or through an extension schema that defines structured attributes.335

Decision Assertion336
A decision assertion reports the result of the specified authorization request.337

Authorization Assertion338
An authorization assertion asserts that a subject has been granted specific permissions to access one or339
more resources.340

The different types of SAML assertion are encoded in a common XML package, which at a minimum consists341
of:342

12

Basic Information.343
Each assertion MUST specify a unique identifier that serves as a name for the assertion. In addition an344
assertion MAY specify the date and time of issue and the time interval for which the assertion is valid.345

Claims.346
The claims made by the assertion. This document describes the use of assertions to make claims for347
Authorization and Key Delegation applications.348

In addition an assertion MAY contain the following additional elements. An SAML client is not required to349
support processing of any element contained in an additional element with the sole exception that an SAML350
client MUST reject any assertion containing a Conditions element that is not supported.351

Conditions.352
The assertion status MAY be subject to conditions. The status of the assertion might be dependent on353
additional information from a validation service. The assertion may be dependent on other assertions354
being valid. The assertion may only be valid if the relying party is a member of a particular audience.355

Advice.356
Assertions MAY contain additional information as advice. The advice element MAY be used to specify357
the assertions that were used to make a policy decision.358

The SAML assertion package is designed to facilitate reuse in other specifications. For this reason XML359
elements specific to the management of authentication and authorization data are expressed as claims. Possible360
additional applications of the assertion package format include management of embedded trust roots [XTASS]361
and authorization policy information [XACML].362
Element <SAMLAssertionPackage>363
The <SAMLAssertionPackage> element is specified by the following schema:364
<element name="SAMLAssertionPackage" type="S0:SAMLAssertionPackageType">365

366
<complexType name="SAMLAssertionPackageType">367

<!-- Basic Information -->368
 <attribute name="Version" type="string"/>369
 <attribute name="AssertionID" type="uriReference"/>370
 <attribute name="Issuer" type="string"/>371
 <attribute name="IssueInstant" type="timeInstant"/>372
 <attribute name="NotBefore" type="timeInstant"/>373
 <attribute name="NotOnOrAfter" type="timeInstant"/>374

375
 <element name="Claims" type="s0:Claims" minOccurs="0"/>376
 <element name="Conditions" type="s0:Conditions" minOccurs="0"/>377
 <element name="Advice" type="s0:Advice" minOccurs="0"/>378
</complexType>379

Six basic information attributes are defined; a protocol version identifier, a unique assertion identifier, an issuer380
identifier, the time instant of issue, the bounds of the validity interval.381

Attribute Version382

Each assertion MUST specify the SAML version identifier. The identifier for this version of SAML is the string383
"1.0".384

13

Attribute AssertionID385

Each assertion MUST specify exactly one unique assertion identifier. All identifiers are encoded as a Uniform386
Resource Identifier (URI) and are specified in full (use of relative identifiers is not permitted).387

The URI is used as a name for the assertion and not as a locator. For the purposes of the SAML protocol it is388
only necessary to ensure that no two assertions share the same identifier. Provision of a service to resolve an389
identifier into an assertion is not a requirement but applications MAY specify a URL as the assertion identifier390
that MAY resolve to the assertion.391

Attribute Issuer392

The Issuer attribute specifies the issuer of the assertion by means of a URI.393

Attribute IssueInstant394

The IssueInstant attribute specifies the time instant of issue in Universal Coordinated Time (UTC).395

Attribute NotBefore and NotOnOrAfter396

The NotBefore and NotOnOrAfter attributes specify limits on the validity of the assertion.397

The NotBefore attribute specifies the time instant at which the validity interval begins. The398
NotOnOrAfter attribute specifies the time instant at which the validity interval has ended399

The NotBefore and NotOnOrAfter attributes are optional. If the value is either omitted or equal to the400
start of the epoch it is unspecified. If the NotBefore attribute is unspecified the assertion is valid at any time401
before the time instant specified by the NotOnOrAfter attribute. If the NotOnOrAfter attribute is402
unspecified the assertion is valid from the time instant specified by the NotBefore attribute with no expiry. If403
neither attribute is specified the assertion is valid at any time.404

In accordance with the XML Schemas Specification, all time instances are interpreted in Universal Coordinated405
Time unless they explicitly indicate a time zone. Implementations MUST NOT generate time instances that406
specify leap seconds.407

Claims408
Element <Claims>409

The <Claims> element contains one or more SAML assertion claims elements of type410
<AbstractClaimType>.411

In each case if more than one assertion claim element is specified the validity of each claim is asserted jointly412
and severally, that is the semantics of a single assertion containing two claims are identical to the semantics of413
two separate assertions each of which contain one of the claims.414

The following schema defines the <Claims> element:415

14

<element name="Claims">416
 <complexType>417
 <sequence>418
 <element name="AbstractClaim" type="s0:AbstractClaimType"419
 minOccurs="0" maxOccurs="unbounded"/>420
 </sequence>421
 </complexType>422
</element>423

424
<complexType name="AbstractClaimType" abstract="true">425
 <sequence>426
 <element name="AssertionRef" type="s0:AssertionRef"/>427
 <!-- To add conditions on a per claim basis add :428
 <element name="Conditions" type="s0:Conditions" minOccurs="0"/>429
 -->430
 </sequence>431
</complexType>432
Element <AssertionRef>433

The <AssertionRef> element specifies the assertion identifier of a prior assertion that has been used to434
generate the assertion in which the <AssertionRef> element occurs.435

The primary purpose of <AssertionRef> elements is to permit auditing of SAML applications. As such an436
<AssertionRef> element is advisory only and does not mandate any specific action on the part of the437
application (such as tracking validity dependencies).438

The following elements may include <AssertionRef> elements:439

AbstractClaimType440
Advises that the specified claim was derived from the specified assertion.441

Subject442
Advises that the Subject definition of the claim was derived from the specified assertion.443

Advice444
Advises that the referenced assertion was used to derive some unspecified portion of the assertion.445

The following schema defines the <AssertionRef> element:446

<complexType name="URIReferenceType">447
 <attribute name="id" type="uriReference">448
</complexType>449

450
<element name="AssertionRef" type="s0:URIReferenceType">451
Element <Subject>452
The <Subject> element specifies the subject of the binding. In every case the subject of a SAML assertion453
binding is a principal. A principal MAY be identified by name and/or by reference to authentication credentials.454
The following forms of subject name are supported:455
Element Description

<CommonName> An unstructured text string, for example “Alice Aardvark”.

<NameID> A URI that specifies the principal by means of a machine-

15

readable identifier.
<Authenticator> Specifies credentials and an authentication protocol by

which the subject may be identified.

<AssertionRef> Specifies that the contents of the <Subject> element were
derived from the specified assertion.

<AbstractSubject
>

Extension schema…

In addition the principal MAY be specified by reference to authentication credentials by means of the456
<Authenticator> element.457
The following schema defines the <Subject> element:458
<element name="Subject">459
 <complexType>460
 <sequence>461
 <element name="CommonName" type="string"/>462
 <element name="NameID" type="s0:URIReferenceType"/>463
 <element name="Authenticator" type="s0:Authenticator"/>464
 <element name="AssertionRef" type="s0:AssertionRef"/>465
 <element name="AbstractSubject"466
 type="s0:AbstractSubjectType"/>467
 </sequence>468
 </complexType>469
</element>470

471
<complexType name="AbstractSubjectType" abstract="true"/>472
Element <Authenticator>473
The <Authenticator> element specifies a means of identifying the subject of the binding by means of their474
authentication credentials.475
The authentication credentials MAY be specified either by means of the XML Digitial Signature476
<ds:KeyInfo> element or by means of the <Authdata> element. Applications SHOULD make use of the477
<ds:KeyInfo> element for credentials that it supports. Applications MAY use the <Authdata> element to478
specify other types of authentication credentials, including passwords.479
The <Authenticator> element MAY specify one or more <Protocol> elements. If present the480
<Protocol> elements specify the authentication algorithms with which the authentication credentials MAY481
be used to obtain an acceptable authentication.482
The following schema defines the <Authenticator> element:483
<element name="Authenticator">484
 <complexType>485
 <sequence>486
 <element name="Protocol" type="uriReference"487
 minOccurs="0" maxOccurs="unbounded"/>488
 <element name="Authdata" type="string"/>489
 <element name="KeyInfo" type="ds:KeyInfo"/>490
 </sequence>491
 </complexType>492
</element>493
Element <DecisionClaim>494
The <DecisionClaim> element asserts that the access permissions specified in the request identified by the495
corresponding RequestID were either permitted, denied or could not be determined.496
The following schema defines the <DecisionClaim> element:497

16

<complexType name="DecisionClaim">498
 <complexContent>499
 <extension base="s0:AbstractClaimType">500
 <attribute name="Decision" type="s0:DecsionType"/>501
 </extension>502
 </complexContent>503
</complexType>504

505
<simpleType name=DecisionType>506
 <restriction base="string">507
 <enumeration value="Permit"/>508
 <enumeration value="Deny"/>509
 <enumeration value="Indeterminate"/>510
 </restriction>511
</simpleType>512
Element <AuthenticationClaim>513
The <AuthenticationClaim> element asserts that the specified subject has been authenticated.514
The following schema defines the <AuthenticationClaim> element:515
<complexType name="AuthenticationClaim">516
 <complexContent>517
 <extension base="s0:AbstractClaimType">518
 <sequence>519
 <element name="Subject" type="s0:Subject"/>520
 </sequence>521
 </extension>522
 </complexContent>523
</complexType>524
Element <AttributeClaim>525
The <AttributeClaim> element asserts that a specified subject has the specified attribute(s) specified by a526
URI.527
The following schema defines the <AttributeClaim> element:528
<complexType name="AttributeClaim">529
 <complexContent>530
 <extension base="s0:AbstractClaimType">531
 <sequence>532
 <element name="Subject" type="s0:Subject"/>533
 <element name="AttributeID" type="s0:URIReferenceType"534
 minOccurs="0" maxOccurs="unbounded"/>535
 </sequence>536
 </extension>537
 </complexContent>538
</complexType>539
Element <ExtendedAttributeClaim>540
The <ExtendedAttributeClaim> element asserts a relationship between the specified subject and a541
collection of attributes specified by means of an extension schema.542
The following schema defines the <ExtendedAttributeClaim> element:543
<complexType name="ExtendedAttributeClaim">544
 <complexContent>545
 <extension base="s0:AbstractClaimType">546
 <sequence>547
 <element name="Subject" type="s0:Subject"/>548
 <element name="Attribute" type="s0:AbstractAttributeType"549
 minOccurs="0" maxOccurs="unbounded"/>550
 </sequence>551

17

 </extension>552
 </complexContent>553
</complexType>554

555
<complexType name="AbstractAttributeType" abstract="true"/>556
Element <AuthorizationClaim>557
The <AuthorizationClaim> element asserts that the specified subject is authorized to perfom the558
specified operation(s)on the specified resource(s).559
Defined permissions are Read, Write, Execute, Delete and Control. Additional permissions may be specified by560
URI through an <ExtendedPermissions> element.561
The following schema defines the <AuthorizationClaim> element:562
<complexType name="AuthorizationClaim">563
 <complexContent>564
 <extension base="s0:AbstractClaimType">565
 <sequence>566
 <element name="Subject" type="s0:Subject"/>567
 <element name="Authorization" type="s0:Authorization"568
 minOccurs="0" maxOccurs="unbounded"/>569
 </sequence>570
 </extension>571
 </complexContent>572
</complexType>573

574
<element name="Authorization">575
 <complexType>576
 <sequence>577
 <element name="Resource" type="uriReference"578
 minOccurs="0" maxOccurs="unbounded"/>579
 <element name="Permission" type="s0:PermissionType"580
 minOccurs="0" maxOccurs="unbounded"/>581
 <element name="ExtendedPermission" type="s0:URIReferenceType"582
 minOccurs="0" maxOccurs="unbounded"/>583
 </sequence>584
 </complexType>585
</element>586

587
<simpleType name=PermissionType>588
 <restriction base="string">589
 <enumeration value="Read"/>590
 <enumeration value="Write"/>591
 <enumeration value="Execute"/>592
 <enumeration value="Delete"/>593
 <enumeration value="Control"/>594
 </restriction>595
</simpleType>596

Conditions597
Element <Conditions>598
Assertion Conditions are contained in the <Conditions> element. SAML applications MAY define599
additional elements using an extension schema. If an application encounters an element contained within a600
<Conditions> element that is not understood the status of the Condition MUST be considered601
Indeterminate.602

18

The following schema defines the <Conditions> element:603

<element name="Conditions">604
 <complexType>605
 <sequence>606
 <element name="AbstractCondition"607
 type="s0:AbstractConditionType"608
 minOccurs="0" maxOccurs="unbounded"/>609
 </sequence>610
 </complexType>611
</element>612

613
<complexType name="AbstractConditionType" abstract="true"/>614
Element <AudienceRestrictionCondition>615

Assertions MAY be addressed to a specific audience. Although a party that is outside the audience specified is616
capable of drawing conclusions from an assertion, the issuer explicitly makes no representation as to accuracy617
or trustworthiness to such a party.618

• Require users of an assertion to agree to specific terms (rule book, liability caps, relying party619
agreement)620

• Prevent clients inadvertently relying on data that does not provide a sufficient warranty for a particular621
purpose622

• Enable sale of per-transaction insurance services.623

An audience is identified by a URI that identifies to a document that describes the terms and conditions of624
audience membership.625

Each client is configured with a set of URIs that identify the audiences that the client is a member of, for626
example:627

http://cp.verisign.test/cps-2000628
Client accepts the VeriSign Certification Practices Statement629

http://rule.bizexchange.test/bizexchange_ruebook630
Client accepts the provisions of the bizexchange rule book.631

An assertion MAY specify a set of audiences to which the assertion is addressed. If the set of audiences is the632
empty set there is no restriction and all audiences are addressed. Otherwise the client is not entitled to rely on633
the assertion unless it is addressed to one or more of the audiences that the client is a member of. For example:634

http://cp.verisign.test/cps-2000/part1635
Assertion is addressed to clients that accept the provisions of a specific part of the VeriSign CPS.636

In this case the client accepts a superset of the audiences to which the assertion is addressed and may rely on the637
assertion.638

The following schema defines the <AudienceRestrictionCondition> element:639

<complexType name="AudienceRestrictionCondition">640

19

 <complexContent>641
 <extension base="s0:AbstractConditionType">642
 <sequence>643
 <element name="Audience" type="s0:URIReferenceType"644
 minOccurs="0" maxOccurs="unbounded"/>645
 </sequence>646
 </extension>647
 </complexContent>648
</complexType>649

Advice650

The Advice element is a general container for any additional information that does not affect the semantics or651
validity of the assertion itself.652
Element <Advice>653

The <Advice> element permits evidence supporting the assertion claims to be cited, either directly (through654
incorporating the claims) or indirectly (by reference to the supporting assertions.655

The following schema defines the <Advice> element:656

<element name="Advice">657
 <complexType>658
 <sequence>659
 <element name="Assertion" type="s0:Assertion"660
 minOccurs="0" maxOccurs="unbounded"/>661
 <element name="AssertionRef" type="s0:AssertionRef"662
 minOccurs="0" maxOccurs="unbounded"/>663
 <any namespace="##any" processContents="Skip">664
 </sequence>665
 </complexType>666
</element>667

SAML Protocol668

SAML Assertions may be generated and exchanged using a variety of protocols. The bindings section of this669
document describes specific means of transporting SAML assertions using existing widely deployed protocols.670
SAML aware clients may in addition use the request protocol defined by the <SAMLQuery> and671
<SAMLQueryResponse> elements described in this section.672
Element <SAMLQuery>673
The query specifies the principal and the resources for which access is requested by use of the claim element674
syntax. The information requested in the response is specified by means of the <Respond> element described675
in section 0.676
The <SAMLQuery> element is defined by the following schema:677
<element name="SAMLQuery">678
 <complexType>679
 <sequence>680
 <attribute name="RequestID" type="s0:AssertionID"/>681
 <element name="QueryTemplate"682
 type="s0:SAMLAssertionPackageType"/>683
 <element name="Respond" type="s0:Respond"/>684
 </sequence>685
 </complexType>686
</element>687

20

Attribute <RequestID>688

The RequestID attribute defines a unique identifier for the assertion request. If an assertion query specifies a689
RequestID value the same value MUST be returned in the response unless a Respond element of Static is690
specified.691

Element <Respond>692
The <Respond> element in the request specifies one or more strings included in the request that specify data693
elements to be provided in the response.694
The Service SHOULD return a requested data element if it is available. The Service MAY return additional695
data elements that were not requested. In particular, the service MAY return data elements specified in the696
request with the response.697
Defined identifiers include:698

Identifier Description

Static Specifies that the response may return any data
element thus allowing the responder to return a
static pre-signed assertion.

DecisionClaim Specifies that the response may return an
assertion that contains a <DecisionClaim>
element

AttributeClaim Specifies that the response may return an
assertion that contains a
<AttributeClaim> element

ExtendedAttributeClaim Specifies that the response may return an
assertion that contains a
<ExtendedAttributeClaim> element

AuthorizationClaim Specifies that the response may return an
assertion that contains a
<AuthorizationClaim> element

AuthenticationClaim Specifies that the response may return an
assertion that contains a <DecisionClaim>
element

XML Schema URI
If a URI is specified the response may contain
Claims, Conditions and Advice elements
specified by the corresponding XML schema.

The <Respond> element is defined by the following schema:699
<element name="Respond" >700
 <complexType>701
 <sequence>702

21

 <element name="Accept" type="string"703
 minOccurs="0" maxOccurs="unbounded"/>704
 </sequence>705
 </complexType>706
</element>707
Element <SAMLQueryResponse>708
The response to a <SAMLQuery> is a <SAMLQueryResponse> element. This returns the RequestID709
specified in the response and a <SAMLAssertionPackage> element. The information returned in the710
response is controlled by the <Respond> element of the request.711
The <SAMLQueryResponse> element is defined by the following schema:712
<element name="SAMLQueryResponse">713
 <complexType>714
 <sequence>715

<!-- Basic Information -->716
 <attributename="RequestID" type="s0:uriReference"/>717
 <element name="SAMLAssertionPackage"718
 type="s0:SAMLAssertionPackageType"/>719
 </sequence>720
 </complexType>721
</element>722

723
</schema>724

Schema Extension725
The SAML schema is designed to support extensibility by means of XML abstract types. Extension schemas726
should specify the purpose of extension elements by defining them as extensions of the appropriate abstract727
types.728
The following abstract types are defined in the schema:729
Abstract Type Purpose
AbstractClaimType Specify a new claim element.
AbstractSubjectType Specify a new element for identifying the

subject of a claim.
AbstractAttributeType Specify structured attribute data.
AbstractConditionType Specify a new condition element.
In addition the <Advice> element permits arbitrary elements to be included without type restriction.730

22

Alternate Assertion Structure Proposal731

Note: this section contains draft-orchard-maler-assertion-00; the differences between this structure and the one732
in the previous section need to be reconciled.733

Introduction734
This section describes a proposal for SAML assertions and the XML structure that conveys them to and from735
SAML Authorities. The structure is simple, easily implementable, and intuitive to XML Schema-aware736
developers, allowing for faster time to development.737
Many parts of this proposal borrow concepts that are much more fully defined in the core-07 proposal. We have738
tried to capture all TBD design issues here; many of them roughly correspond to the numbered issues currently739
faced by the TC.740

Definitions741
The following definitions are used in this proposal:742

• Request: A SAML-compliant XML structure (“compound”) that asks for a particular SAML Authority743
to produce assertions.744

• Response: A SAML-compliant XML structure (“compound”) that encodes the assertions produced by a745
SAML Authority on request.746

• Assertions package : A grouping of atomic assertions (“molecule”). The core-07 proposal called this an747
“assertion.”748

• Assertion: A single declaration of fact (“atom”). The core-07 proposal called this a “claim.”749
• Metadata: Properties of an XML structure that apply equally to all parts of it. For example, an assertion750

has metadata that identifies who issued it and when, and a request has metadata indicating what version751
of SAML was used to encode it.752

Section Conventions753

XML element and attribute names are shown in bold; typically these elements would be declared to have754
complex types that are anonymous. XML complex type names that are abstract and do not necessarily755
correspond directly to elements are shown in italic.756
The class diagram notation uses UML; abstract class names are italicized in correspondence with XML abstract757
complex types. In the diagram, parent elements are shown above their child elements. The cardinality shown on758
each relationship line represents the number of child elements allowed inside each instance of the parent759
element. Order of child elements within a parent element is not precisely shown in this diagram, though the760
schema mostly uses sequential content models.761

XML Design Principles762
The proposed design adheres to the following principles for XML structure design.763

1. Top typing : Use XML Schema complex typing to identify commonalities as high up in the XML tree as764
possible. This allows XML validators to function as “free error checkers” on assertions and improves765
performance of streaming tools. With suitable definition of subtypes, we believe it is possible to use any766
style of querying (not just XML Query) with SAML, and so the decision on querying style can be made767
independently of this principle.768

2. Isolate extensions : Use XML Namespaces and XML Schema to isolate extensibility features where769
possible, so that schema modules can be used to ensure compliance with extensions and so that770

23

extensions can be uniquely referred to with XML namespace names. This makes it easier to describe771
conformance to extensions.772

3. Existing vocabularies: Consider reusing existing XML vocabularies where they exist, are well773
supported, and directly address a SAML need. For example, if SAML needed a facility for marking up774
error messages, it should prefer XHTML to a new SAML-specific vocabulary.775

4. Elements vs. attributes: Tend towards attributes for metadata and “single-field” information, and776
elements for any content that has distinguishable subparts.777

SAML Message Architecture778

SAML-encoded information can be conveyed as a whole message in its own right (“standalone SAML”),779
without being embedded in another XML structure such as a purchase order. The form it takes for this purpose780
is either a request message or a response message. It is presumed that a SAML message is conveyed by some781
external means of transport/messaging (which could include an XML-based messaging protocol such as782
SOAP); this is in the purview of the Bindings subcommittee.783
Because it may be necessary to embed SAML assertions inside other XML structures (“embedded SAML”), we784
anticipate that these higher-level request and response structures might not always be used. Thus, there is a785
Version attribute both on SAMLRequest and SAMLResponse, and also on all the individual assertion786
elements.787
The class diagram below shows the outlines of the entire structure.788
Issues:789

1. What provision do we need to make for digitally signing requests and responses? What subparts need to790
be signed individually?791

2. Where a particular binding chooses to extract some of the SAML-native information and present it in792
out-of-band layers, how should the SAML schema handle the possibility of missing information? Can it793
be assumed that the process of extracting the information is done after validation on the producing end794
and that there is a process of re-introducing it into the SAML stream before the consuming end validates795
it?796

3. How should unique IDs be handled? Currently we have put generic *ID attributes in the places where797
we think IDs should be, and have not said what the constraints on their content or handling are. We have798
also proposed that the Issuer attribute contain a fully qualified DNS domain name. If an issuer/serial799
number pair is chosen, it would require the *ID attributes to become *SerialNumber attributes.800

4. In the case of “embedded SAML,” would single assertions be embedded, or would whole assertions801
packages be embedded? This decision will have an affect on the pattern of metadata available on these802
two layers.803

5. How would Policies be added to the model for XACML queries?804

24

Subject Assertion
(Atom)

Authentication
Assertion(Atom)

Authorization
Assertion(Atom)

-Any

Attribute
Assertion(Atom)-CommonName

-NameID
-Any

Subject

Resource Permission
-Protocol
-NameID
-AuthData
-KeyInfo

Authenticator

1 1..* 1..*

-Decision

Authorization Decision
Assertion(Atom)

Conditions

0..1

Advice

0..1

-requestID
-version

SAMLRequest

*

-Any

SAMLXQuery

1

-requestID
-version

SAMLResponse

*

-NotBefore
-NotAfter
-AssertionsPackageID

Assertions
Package

(Molecule)

1

-Version
-AssertionID
-Issuer
-IssueInstant

Assertion
(Atom)

Subject Assertions
Package

(Molecule)

*

Subject Assertions
Package contain only

subject assertions

1..*

*
Audience

*

PermissionBase

805
SAMLRequest Element806
The request message element, SAMLRequest, is a collection of XML-encoded SAML information that is807
intended to be sent to a SAML Authority. It puts the actual query in the required SAMLXQuery element, and808
may also supply zero or more SubjectAssertionsPackages as auxiliary input.809
The query operates over all the assertions available to the SAML Authority being queried, plus the assertions810
provided as auxiliary input. It is expected that implementations will store the assertion information in811
proprietary mechanisms, such as various RDBMS tables, LDAP tables, files, etc. Thus a query is made against812
a “virtual” model.813

25

The request has metadata indicating the version of SAML (Version) in which the message is encoded and a814
unique identifier for the request (RequestID).815
Rationale:816
The need for providing assertions as auxiliary input is demonstrated by the dotted-line relationships in our817
domain model, in which (for example) Authentication Assertions can serve as input to Attribute Authorities that818
ultimately generate Attribute Assertions. Each assertions package has the opportunity to provide its own819
Conditions and Advice.820
Issues:821

1. Should a SAML request allow for additional non-SAML auxiliary information, akin to Advice?822
2. Should the request ID be handled differently? A “requester” field (similar to Issuer) might be needed on823

the request as a whole if a two-part unique identified system is used.824
825

SAMLXQuery Element826
The main content of a SAMLRequest is the query itself, the SAMLXQuery element.827
This document proposes the use of a subset of XML Query, including FLWR expressions (FOR, LET,828
WHERE, RETURN) and OPERATIONS, but not functions, conditionals, filtering, or custom data types.829
Rationale:830
The element was given the name SAMLXQuery because it is a SAML-specific subsetting of a query in XML831
Query form. It is the only element, other than the two top-level message elements, that has “SAML” in the832
name.833
The XML Query approach is being proposed for the following reasons:834

• It achieves a higher level of reuse of other specifications, following design principle #3.835
• It will tend to increase developer productivity because XML Query engines already exist.836
• It allows developers to focus on the data model rather than the query syntax.837
• It allows arbitrary new kinds of queries to be generated without changes in the SAML specification or838

deployed SAML-compliant systems.839
Issues:840

1. What form should the query take? The most recent Focus telecon listed three possible directions to go841
with this: allow only specific forms of request that have no variability in them (not really a query at all),842
a SAML-specific query language along the lines of core-07’s Respond element identifiers, and a (subset843
of a) generalized query language such as XML Query.844

2. If we go with the XML Query approach, we are assuming that subsetting is required. Is the subsetting845
necessary? How should this subsetting be done? Should the subset be enforced in the SAML schema by846
making the query elements be SAML-native elements? This would allow greater control over the847
inbound elements and help conformance, but would not give us the same reuse benefits because they848
would no longer be in the XML Query namespace.849

3. Even if XML Query is used, should there be in addition a shorthand notation for common query850
structures, along the lines of core-07’s Respond element? An analogy is that Xpath has a short-hand851
and long-hand syntax. Most people use the short-hand syntax.852

853
SubjectAssertionsPackage Element854
The auxiliary input to a SAML request is an optional SubjectAssertionsPackage element, which contains one855
or more assertions of the SubjectAssertion type; in addition to inheriting metadata attributes, these assertions all856
share the characteristic that they require a Subject element as their first subelement. SAML should be able to be857
extended to add new assertions of this type. The SubjectAssertionsPackage element is a subtype of858
AssertionsPackage, and inherits metadata attributes from it.859

26

Rationale:860
Following design principle #1, The SubjectAssertion type factors out the commonalities in an important set of861
assertions, those that are subject-centric. Such assertions may require handling that is different from non-862
subject-centric assertions, and therefore this deserves its own type. We anticipate that some extension assertions863
(for example, session assertions) will want to be of this subtype.864
Issues:865

1. Should SubjectAssertionsPackage inherit Conditions and Advice as well as the metadata attributes?866
867

SAMLResponse Element868
The response message, SAMLResponse, is a collection of XML-encoded SAML information intended to be869
the output of a SAML Authority. It contains a set of one or more AssertionsPackages generated in response to870
a request, optionally preceded by a Conditions elements and optionally followed by an Advice element.871
The response has metadata attributes indicating:872

• The version of SAML (Version) in which the message is encoded873
• A reference to the unique identifier for the request that it is responding to (RequestID)874

The Conditions element provides auxiliary data that is specific to the package on which it appears. Currently,875
this consists only of a series of Audience elements, each of which contains a string identifying the relevant876
audience. SAML Authorities are required to understand and process the contents of any Conditions element877
provided; if they do not understand, they must produce an error.878
The Advice element provides auxiliary data that is not required for understanding and processing the package.879
It can contain any content that is not from the SAML namespace.880
Rationale:881
This structure allows one or more packages because they may have different NotBefore and NotAfter values.882
This structure disallows repetition of the Conditions and Advice elements because a single element is enough883
to contain whatever conditions or advice is necessary, and there are no metadata attributes on these elements884
that would benefit from multiple instances with different attribute values.885
Issues:886

1. How should error conditions for responses be handled?887
2. Is the Audience information in scope for SAML? (Core-07 describes it as a URI that points to a888

document that identifies the terms and conditions for audience membership.)889
3. Is there any other information that SAML should allow in Conditions? Should non-SAML namespaces890

be allowed here?891
892

AssertionsPackage Element893
The content of a SAML response is set of AssertionsPackage elements, which contains one or more assertions894
of the Assertion type. The AssertionsPackage type provides metadata attributes:895

• AssertionsPackageID: a unique identifier for this package.896
• NotBefore : The time instant before which the assertions contained within are not valid.897
• NotAfter: The time instant after which the assertions contained within are not valid.898

Rationale:899
The AssertionsPackage element is useful as a grouping mechanism for several assertions of different kinds900
whose validity interval metadata is shared in common. For example, a “combination authority” that is capable901
of producing several different kinds of assertions may produce them all at once in response to a request, and902
then provide the validity information on the package element that contains them all.903
Issues:904

1. Is a “binding assertion” needed as a native SAML assertion?905

27

2. Given that individual assertions might be embedded in other XML documents, and given that the906
AttributeAssertion element implicitly allows multiple attributes in a single assertion, should the907
NotBefore and NotAfter attributes go on the assertion level instead of on the package level? There908
wouldn’t seem to be too much point to the package level if this were done.909

Individual Assertion Structures910
Individual assertions can be of the Assertion type, which provides the following metadata attributes:911

• Version: The version of SAML used to encode this assertion.912
• AssertionID : a unique identifier for this assertion.913
• Issuer: The fully qualified DNS domain name of the issuer.914
• IssueInstant : A timestamp indicating when the one or more assertions contained within were issued.915

SAML can be extended to add new assertions of the Assertions type.916
Some SAML assertions are further subtyped as being of the SubjectAssertion type. SAML can be extended to917
add new assertions of this type. In addition to having the metadata attributes, these assertions inherit Subject as918
their first child element.919
Rationale:920
The Version attribute is available here because individual assertions might be embedded in other XML921
structures, such as purchase orders, and an assertion element might thus be a “top-level” SAML element in that922
context.923

924
AttributeAssertion Element925
The AttributeAssertion element is of the SubjectAssertion type. In addition to its inherited metadata attributes926
and Subject child element, it can contain any amount of non-SAML-namespace elements that convey the927
attribute data. SAML-compliant systems need to negotiate the attributes they understand by means of XML928
Schemas.929
Rationale:930
Following design principle #2, namespaces are used to manage extensibility. XML Schemas allow for931
complete flexibility in the content model of attributes. This is much more suitable for extensibility than the932
alternatives of name/value pairs or structured strings.933

934
AuthenticationAssertion Element935
The AuthenticationAssertion element is of the SubjectAssertion type. It contains nothing beyond its inherited936
metadata attributes and Subject child element.937
Rationale:938
There is only one Subject element allowed because conveying multiple authentications is less likely than the939
scenario of conveying only one of them, and if it is necessary to convey multiple ones, then a package can be940
used.941

942
AuthorizationAssertion Element943
The AuthorizationAssertion element is of the SubjectAssertion type. In addition to its inherited metadata944
attributes and Subject child element, it contains a Resource element and one or more Permission elements.945
Rationale:946

SEE THE ISSUES BELOW.947

Issues:948

28

3. AUTHORIZATION “ASSERTIONS” SEEM TO BE NEEDED ONLY AS A WAY TO EXPRESS POLICY949
“FACTS,” AND THEY DON’T REALLY HAVE A PLACE IN OUR DOMAIN MODEL (UNLESS DECISION950
ASSERTIONS EVENTUALLY TURN OUT TO USE THE BASIC FORM DESCRIBED HERE: SUBJECT,951
PERMISSIONS, RESOURCE). SHOULD AUTHORIZATION ASSERTIONS BE A KIND OF AUXILIARY DATA,952
RATHER THAN BEING SEEN AS ASSERTIONS?953

4. WHAT SHOULD THE STRUCTURE OF THE RESOURCE ELEMENT BE? SHOULD IT BE AN ATTRIBUTE OR954
AN ELEMENT? IT’S PRETTY CLEAR THAT IT PROBABLY WANTS TO BE A URI REFERENCE, BUT ARE955
THERE ANY RESTRICTIONS ON WHAT KINDS OF URI REFERENCE? DO WE HAVE TO SAY ANYTHING956
ABOUT EQUALITY RULES FOR RESOURCE URIS? SHOULD THE RESOURCE ELEMENT ALLOW FOR957
PLURAL VALUES?958

5. WHAT SHOULD THE STRUCTURE OF THE PERMISSION ELEMENT BE? SHOULD ITS RANGE OF959
POSSIBLE PERMISSIONS BE EXTENSIBLE?960

961
AuthorizationDecisionAssertion Element962
The AuthorizationDecisionAssertion element is of the Assertion type. It inherits metadata attributes, and has963
an additional attribute, Decision, which provides the decision in response to the request whose ID is referenced964
in the SAMLResponse ancestor of this element.965
Rationale:966

SEE THE ISSUE BELOW AND THE INFORMATION ABOUT AUTHORIZATIONASSERTION ABOVE.967

Issues:968
1. Should decision assertions have a structure more like authentication assertions, repeating the subject,969

resource and permissions that are being approved? In this case, how would a “no” answer be conveyed?970

Subject Element971

The Subject element appears in the assertions of SubjectAssertion type. It contains zero or more Authenticator972
elements, and has two attributes: CommonName and NameID. The Authenticator element has only the973
following attributes:974

• Protocol975
• NameID976
• AuthData977
• KeyInfo978

Issues:979
1. We borrowed the core-07 design for the Subject element. We need to understand this structure better,980

and also there are outstanding TC issues regarding subjects, indexical references, and so on that affect981
this element directly.982

2. Should there be an ID reference from Subject to the relevant AttributeAssertion?983
3. Should Authenticator be called ValidationOfBinding instead?984

Summary of Extensibility Features985
Implementations are offered flexibility in the following areas:986

• Arbitrary queries against the data model are allowed.987
• Arbitrary attribute information is permitted in the AttributeAssertion element. Attributes can be in988

whatever form the implementations agree upon, so long as they can be constrained by a schema and can989
be represented by an XML Query.990

29

• Additional Assertion and SubjectAssertion types are allowed to appear. An example might be a991
SessionAssertion, which would be a subtype of SubjectAssertion.992

Issues:993
1. Is it a requirement that other schemas can redefine SAML components? This may make sense in the994

assertions bindings. For example, a SOAP-SEC:Assertion could be redefined from s0:Assertion. This995
will make a difference in how the SAML schema’s target namespace is handled.996

2. There are other questions about extensibility that appear in the various issues lists above.997

Summary of Differences from core-07998

1. Removal of Responds element999
2. Removal of Bindings and Claims elements, replace with new structures including subject, object,1000

permissions1001
3. Change of attributes from list of strings to open model1002
4. Create top-level assertion type with subtypes1003
5. Move the resource from the claims/bindings/authorization/resource to resource1004
6. Move the permission from the claims/bindings/authorization/permission to permission1005

Request Methods1006
The following are some sample requests that need to be supported by SAML. Some of these came from Tim1007
Moses’s recent post.1008

1. Can Alice read finance?1009
2. Can Alice read finance with an attribute Assertion?1010
3. Can Alice read finance with Role Admin?1011
4. The requestor requests an authentication assertion that will be accepted by an identified secondary1012

domain. The requestor, in its request, identifies the target domain. The responder returns an indication1013
of its success or failure and the resulting assertion or a reference to an assertion (in the event of success)1014
that it stores for later retrieval.1015

5. The requestor requests an attribute assertion that will be accepted by another (unspecified) secondary1016
domain. The request specifies the requested attributes. For instance, a group name, a role, a signing1017
authority or a security clearance. The responder returns an indication of its success or failure. If it1018
indicates success, it may return the requested assertion or a more general version of the requested1019
assertion. If it indicates failure, it may return nothing or a more constrained version of the requested1020
assertion.1021

6. The requestor sends a reference to an authentication or attribute assertion to the responder, indicating1022
that it wants the corresponding assertion to be returned. If successful, the responder returns the1023
assertion.1024

7. The requestor sends a description of an assertion that it would like the responder to locate, retrieve and1025
return. If successful, the responder returns a success indication and an assertion that either exactly1026
meets the requirements or is more general. If unsuccessful, the responder returns a failure indication1027
and (optionally) one or more assertions that are more specific than the one specified. The sample used is1028
Alice trying to read finance, and if she can't read finance or *, then return if she can read finance/f11029

8. The requestor sends a question concerning the authorization status of a subject in relation to a specified1030
resource. The subject may be identified by name, by an authentication assertion or by a reference to an1031
authentication assertion. If necessary, the responder locates and retrieves the specified (or a suitable)1032
assertion) and evaluates it in relation to the resource. It can reply in one of three ways: "Yes", "No" or1033
"No, but if you had asked this (more specific) question, the answer would have been 'yes'".1034

30

Issues:1035
1. We need to agree on what types of requests are in scope, and (in each case) which type of SAML1036

Authority they would be addressed to and what the expected response content is. Does the above list1037
capture what we want?1038

W3C XML Schema Design principles1039
This section describes the principles used in creating the SAML XML Schema. Many of the principles are1040
from1041

1042
1. Named types used, rather than anonymous types http://www.xfront.com/ElementVersusType.html1043
2. The xml schema best practice design pattern of variable content containers using abstract type and type1044

substitution is used, http://www.xfront.com/VariableContentContainers.html1045
1046

Issues:1047
1. Should the dangling type pattern be used? This allows removal of the xsi:type attribute. Or can XML1048

Schema SubstitutionGroups be used.1049
2. Should the ANY content model be used for extension of assertion, as per1050

http://www.xfront.com/ExtensibleContentModels.html?1051
3. Is it a requirement that other schemas can redefine SAML components? This may make sense in the1052

assertions bindings. For example, a SOAP-SEC:Assertion could be redefined from s0:Assertion. If this1053
is the case, then the chameleon pattern of http://www.xfront.com/ZeroOneOrManyNamespaces.html1054
should be used.1055

4. Would AttributeGroups be useful for the Assertions attributes1056
5. Should we make all the single-use complex types anonymous? It's distracting to see1057

name="SAMLQuery" type="s0:SAMLqueryType" and then have a named complex type, when we1058
haven't said we want extensibility for this type.1059

6. Should the use of local element names with complexTypes be changed to global element names?1060
1061

Schema and Example Documents1062

A large number of documents are included here to normatively define the schema, illustrate various extensions,1063
and show samples.1064

Complete Assertions Schema1065
<?xml version="1.0" encoding="UTF-8"?>1066
<xsd:schema targetNamespace="http://www.oasis.org/tbs/1066-12-25/" xmlns="http://www.w3.org/2000/10/XMLSchema"1067
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"1068
xmlns:s0="http://www.oasis.org/tbs/1066-12-25/"1069
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"1070
elementFormDefault="unqualified">1071

<!-- Schema for all Assertions -->1072
<xsd:element name ="SAMLRequest" type="s0:SAMLRequestType"/>1073
<xsd:complexType name ="SAMLRequestType">1074

<xsd:sequence>1075
<xsd:element name ="SAMLXQuery" type="s0:SAMLXQuery" minOccurs="1" maxOccurs="1"/>1076
<xsd:element ref="s0:SubjectAssertionsPackage" minOccurs="0" maxOccurs="unbounded"/>1077

1078
</xsd:sequence>1079
<xsd:attribute name="RequestID" type="s0:RequestIDType"/>1080
<xsd:attribute name="Version" type="s0:VersionType"/>1081

</xsd:complexType>1082

31

1083
<xsd:element name ="SAMLResponse" type="s0:SAMLResponseType"/>1084
<xsd:complexType name ="SAMLResponseType">1085

<xsd:sequence>1086
<xsd:element ref="s0:AssertionsPackage" minOccurs="1" maxOccurs="unbounded"/>1087

</xsd:sequence>1088
<xsd:attribute name="RequestID" type="s0:RequestIDType"/>1089
<xsd:attribute name="Version" type="s0:VersionType"/>1090

</xsd:complexType>1091
1092

<xsd:complexType name ="SAMLXQuery" mixed=" true">1093
<xsd:choice>1094

<xsd:any namespace="##any" processContents="skip"/>1095
</xsd:choice>1096

</xsd:complexType>1097
1098

<xsd:element name ="AssertionsPackage">1099
<xsd:complexType>1100

<xsd:sequence>1101
<xsd:element name ="Conditions" type="s0:ConditionsType" minOccurs="0" maxOccurs="1"/>1102
<xsd:element name ="Assertion" type="s0:AssertionType" minOccurs="1" maxOccurs="unbounded"/>1103
<xsd:element name ="Advice" type="s0:AdviceType" minOccurs="0" maxOccurs="1"/>1104
<!-- Basic Information -->1105

</xsd:sequence>1106
<xsd:attribute name="AssertionsPackageID" type="s0:AssertionIDType"/>1107
<xsd:attribute name="NotBefore" type="timeInstant"/>1108
<xsd:attribute name="NotAfter" type=" timeInstant"/>1109

</xsd:complexType>1110
</xsd:element>1111

1112
<xsd:element name ="SubjectAssertionsPackage">1113

<xsd:complexType>1114
<xsd:complexContent>1115

<xsd:restriction>1116
<xsd:sequence>1117

<xsd:element name ="Assertion" type="s0:SubjectAssertionType" minOccurs="0" maxOccurs="unbounded"/>1118
<!-- Basic Information -->1119

</xsd:sequence>1120
<xsd:attribute name="RequestID" type="s0:AssertionIDType"/>1121
</xsd:restriction>1122
</xsd:complexContent>1123

</xsd:complexType>1124
</xsd:element>1125

1126
1127

<xsd:element name ="Assertion" type="s0:AssertionType"/>1128
<xsd:complexType name ="AssertionType" abstract="true">1129

<xsd:sequence>1130
<!-- Basic Information -->1131

</xsd:sequence>1132
<xsd:attribute name="Version" type="s0:VersionType"/>1133
<xsd:attribute name="AssertionID" type="s0:AssertionIDType"/>1134
<xsd:attribute name=" Issuer" type="s0:IssuerType"/>1135
<xsd:attribute name=" IssueInstant" type="timeInstant"/>1136
</xsd:complexType>1137

1138
1139

<xsd:complexType name ="SubjectAssertionType">1140
<xsd:complexContent>1141

<xsd:extension base="s0:AssertionType">1142
<xsd:sequence>1143

<xsd:element name ="Subject" type="s0:SubjectType" minOccurs="1" maxOccurs="1"/>1144
</xsd:sequence>1145

</xsd:extension>1146
</xsd:complexContent>1147

</xsd:complexType>1148

32

1149
<xsd:complexType name ="AuthenticationAssertionType">1150

<xsd:complexContent>1151
<xsd:extension base="s0:SubjectAssertionType">1152
</xsd:extension>1153

</xsd:complexContent>1154
</xsd:complexType>1155

1156
<xsd:complexType name ="AttributeAssertionType">1157

<xsd:complexContent>1158
<xsd:extension base="s0:SubjectAssertionType">1159

<xsd:sequence>1160
1161

<!-- the namespace should be any, but I'm doing this to make sure the parser validates at least1162
 the namespace name -->1163
<xsd:any namespace="http://www.oasis.org/tbs/1066-12-25/s/" processContents="strict"/>1164

</xsd:sequence>1165
</xsd:extension>1166

</xsd:complexContent>1167
</xsd:complexType>1168
<xsd:element name ="AuthorizationDecisionAssertion" type="s0:AuthorizationDecisionAssertionType"/>1169
<xsd:complexType name ="AuthorizationDecisionAssertionType">1170

<xsd:complexContent>1171
<xsd:extension base="s0:AssertionType">1172

<xsd:sequence>1173
<xsd:element name ="Decision" type="s0:DecisionType"/>1174

</xsd:sequence>1175
</xsd:extension>1176

</xsd:complexContent>1177
</xsd:complexType>1178
<xsd:complexType name ="AuthorizationAssertionType">1179

<xsd:complexContent>1180
<xsd:extension base="s0:SubjectAssertionType">1181

<xsd:sequence>1182
<xsd:element name ="Resource" minOccurs="1" type="string"/>1183
<xsd:element ref="s0:Permission" minOccurs="1" maxOccurs="unbounded"/>1184
<xsd:any namespace="##any" processContents="strict"/>1185

</xsd:sequence>1186
</xsd:extension>1187

</xsd:complexContent>1188
</xsd:complexType>1189
<xsd:simpleType name="DecisionType">1190

<xsd:restriction base="string">1191
<xsd:enumeration value="Permit"/>1192
<xsd:enumeration value="Deny"/>1193
<xsd:enumeration value=" Indeterminate"/>1194

</xsd:restriction>1195
</xsd:simpleType>1196

1197
<xsd:element name ="Permission" type="s0:PermissionType" abstract="true"/>1198

1199
<xsd:complexType name ="PermissionType">1200

<xsd:simpleContent>1201
<xsd:restriction base="string"/>1202

</xsd:simpleContent>1203
</xsd:complexType>1204

1205
<xsd:element name ="BasePermission" type="s0:PermissionBaseType" substitutionGroup="s0:Permission"/>1206
<xsd:complexType name ="PermissionBaseType">1207

<xsd:simpleContent>1208
<xsd:restriction base="string">1209

<xsd:enumeration value="R"/>1210
<xsd:enumeration value="W"/>1211
<xsd:enumeration value="Use"/>1212
<xsd:enumeration value="Admin"/>1213

</xsd:restriction>1214

33

</xsd:simpleContent>1215
</xsd:complexType>1216

1217
<xsd:simpleType name="VersionType">1218

<xsd:restriction base="string"/>1219
</xsd:simpleType>1220
<xsd:simpleType name="AssertionIDType">1221

<xsd:restriction base="string"/>1222
</xsd:simpleType>1223

1224
<xsd:simpleType name="RequestIDType">1225

<xsd:restriction base="string"/>1226
</xsd:simpleType>1227
<xsd:simpleType name=" IssuerType">1228

<xsd:restriction base="string"/>1229
</xsd:simpleType>1230
<xsd:element name ="Subject" type="s0:SubjectType"/>1231
<xsd:complexType name ="SubjectType">1232

<xsd:sequence>1233
<xsd:element name ="CommonName" type="string" minOccurs="0"/>1234
<xsd:element name ="NameID" type="uriReference" minOccurs="0"/>1235
<xsd:element ref="s0:Authenticator" minOccurs="0"/>1236
<xsd:any namespace="##any" processContents="lax"/>1237

</xsd:sequence>1238
</xsd:complexType>1239
<xsd:element name ="Authenticator">1240

<xsd:complexType>1241
<xsd:sequence>1242

<xsd:element name ="Protocol" type="string" minOccurs="0" maxOccurs="unbounded"/>1243
<xsd:element name ="NameID" type="uriReference"/>1244
<xsd:element name ="Authdata" type="string"/>1245
<xsd:element name ="KeyInfo" type="string"/>1246
<!-- ds:KeyInfo"/> -->1247

</xsd:sequence>1248
</xsd:complexType>1249

</xsd:element>1250
<xsd:element name ="Conditions" type="s0:ConditionsType"/>1251
<xsd:complexType name ="ConditionsType">1252

<xsd:sequence>1253
<xsd:element name ="Audiences" type="string" minOccurs="0" maxOccurs="unbounded"/>1254

</xsd:sequence>1255
</xsd:complexType>1256

1257
<xsd:element name ="Advice" type="s0:ConditionsType"/>1258
<xsd:complexType name ="AdviceType">1259

<xsd:sequence>1260
<xsd:element name ="Assertion" type="s0:AssertionType" minOccurs="0" maxOccurs="unbounded"/>1261

</xsd:sequence>1262
</xsd:complexType>1263

</xsd:schema >1264
1265

Sample Authorization Decision Assertion1266
<?xml version="1.0" encoding="UTF-8"?>1267
<s0:Assertion xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"1268
xmlns:s0="http://www.oasis.org/tbs/1066-12-25/"1269
xsi:schemaLocation="http://www.oasis.org/tbs/1066-12-25/ D:\AllMaterial\OASIS-Sec-TC\Assertions.xsd"1270
xsi:type="s0:AuthorizationDecisionAssertionType"1271
AssertionID="http://www.bizexchange.test/assertion/AE0221"1272
Issuer="URN:dns-date:www.bizexchange.test:2001-01-03:19283">1273

<Decision>Deny</Decision>1274
</s0:Assertion>1275

1276
Sample Attribute Assertion1277
<?xml version="1.0" encoding="UTF-8"?>1278
<s0:Assertion xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"1279

34

xmlns:s0="http://www.oasis.org/tbs/1066-12-25/"1280
xmlns:s1="http://www.oasis.org/tbs/1066-12-25/s/"1281
xsi:schemaLocation="http://www.oasis.org/tbs/1066-12-25/ D:\AllMaterial\OASIS-Sec-TC\Assertions.xsd" xsi:type="s0:AttributeAssertionType"1282
AssertionID="http://www.bizexchange.test/assertion/AE0221"1283
 Issuer="URN:dns-date:www.bizexchange.test:2001-01-03:19283"1284
xmlns:someOtherNs="http://www.example.org/something">1285
<Subject>1286

<NameID>mailto:Alice@bizex.test</NameID>1287
</Subject>1288
<s1:Role>Admin</s1:Role>1289

1290
</s0:Assertion>1291

1292
Sample Assertions Repository1293
<?xml version="1.0" encoding="UTF-8"?>1294
<s0:AssertionsPackage1295
xmlns:s0="http://www.oasis.org/tbs/1066-12-25/"1296
xmlns:s1="http://www.oasis.org/tbs/1066-12-25/s/"1297
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"1298
xsi:schemaLocation="http://www.oasis.org/tbs/1066-12-25/1299
D:\AllMaterial\OASIS-Sec-TC\sampleExtensions1.xsd1300
http://www.oasis.org/tbs/1066-12-25/s/1301
D:\AllMaterial\OASIS-Sec-TC\sampleExtensions2.xsd" >1302
<!-- Sample File, named SampleAuthorityAssertionsList.xml -->1303
<!-- Test file for executing SAML Queries against -->1304
<!-- This file would be a virtual file in a real system -->1305

1306
<!-- The following extensions are shown: -->1307
<!-- 1. Custom attributues for a user, in a different namespace -->1308
<!-- 2. Customer required rights, in the same namespace -->1309

1310
<!--ToDo: XMLSpy does not seem to validate the Any contents -->1311

<Assertion xsi:type="s0:AttributeAssertionType">1312
<Subject>1313

<NameID>mailto:Alice@bizex.test</NameID>1314
</Subject>1315
<s1:Role xsi:type="s1:Role">Admin</s1:Role>1316

</Assertion>1317
<!-- Alice can Read and Write-->1318
<Assertion xsi:type="s0:AuthorizationAssertionType">1319

<Subject>1320
<NameID>mailto:Alice@bizex.test</NameID>1321

</Subject>1322
<Resource>1323

http://store.carol.test/finance1324
</Resource>1325
<s0:BasePermission>R</s0:BasePermission>1326

</Assertion>1327
1328

<!-- Users with Role Admin can Admin the resource -->1329
<Assertion xsi:type="s0:AuthorizationAssertionType">1330

<Subject>1331
<someOtherNs:Role>Admin</someOtherNs:Role>1332

</Subject>1333
<Resource>1334

http://store.carol.test/finance1335
</Resource>1336
<s0:BasePermission>Admin</s0:BasePermission>1337

1338
</Assertion>1339

<!-- Alice can Write -->1340
<Assertion xsi:type="s0:AuthorizationAssertionType">1341

<Subject>1342
<NameID>mailto:Alice@bizex.test</NameID>1343

</Subject>1344

35

<Resource>1345
http://store.carol.test/finance21346

</Resource>1347
<s0:ExtensionPermission>Provision</s0:ExtensionPermission>1348

1349
</Assertion>1350

</s0:AssertionsPackage>1351
1352
1353

Sample Extensions #1 – sampleExtensions1.xsd1354
<?xml version="1.0" encoding="UTF-8"?>1355
<xsd:schema targetNamespace="http://www.oasis.org/tbs/1066-12-25/" xmlns="http://www.w3.org/2000/10/XMLSchema"1356
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema" xmlns:s0="http://www.oasis.org/tbs/1066-12-25/" elementFormDefault="unqualified">1357

<xsd:include schemaLocation="D:\AllMaterial\OASIS-Sec-TC\Assertions.xsd"/>1358
1359

<!-- Sample Extensions #1 shows an addition Permission -->1360
<xsd:element name ="ExtensionPermission" type="s0:PermissionExtensionType" substitutionGroup="s0:Permission"/>1361
<xsd:complexType name ="PermissionExtensionType">1362

<xsd:simpleContent>1363
<xsd:restriction base="string">1364

<xsd:enumeration value="Provision"/>1365
</xsd:restriction>1366

</xsd:simpleContent>1367
</xsd:complexType>1368

</xsd:schema >1369

1370
Sample Extensions #2 – sampleExtensions2.xsd1371
<?xml version="1.0" encoding="UTF-8"?>1372
<xsd:schema targetNamespace="http://www.oasis.org/tbs/1066-12-25/s"1373
xmlns="http://www.w3.org/2000/10/XMLSchema"1374
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"1375
xmlns:s1="http://www.oasis.org/tbs/1066-12-25/s"1376
elementFormDefault="unqualified">1377

1378
<!-- sampleExtensions #2 shows a custom attribute, role -->1379

<xsd:element name ="Role">1380
<xsd:simpleType>1381

<xsd:restriction base="string">1382
<xsd:enumeration value="User"/></xsd:restriction>1383

</xsd:simpleType>1384
</xsd:element>1385

1386
</xsd:schema >1387

1388
Sample Request #11389
<?xml version="1.0" encoding="UTF-8"?>1390
<s0:SAMLQuery xmlns:s0="http://www.oasis.org/tbs/1066-12-25/" xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"1391
xsi:schemaLocation="http://www.oasis.org/tbs/1066-12-25/ D:\AllMaterial\OASIS-Sec-TC\Assertions.xsd">1392

<!-- example 2.1.4. Can Alice read finance? -->1393
<SAMLXQuery>1394

<AssertionsPackage>1395
FOR $S IN document("SampleAuthorityAssertionsList.xml")1396
WHERE $S/Resource = "http://store.carol.test/finance"1397
AND $S/Subject/NameID = "mailto:Alice@bizex.test"1398
AND $S/Permission = "Admin"1399
RETURN $S1400
</AssertionsPackage>1401

</SAMLXQuery>1402
</s0:SAMLQuery>1403

36

1404
1405

Sample Result #11406
<?xml version="1.0" encoding="UTF-8"?>1407
<s0:AssertionsPackage xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"1408
xmlns:s0="http://www.oasis.org/tbs/1066-12-25/"1409

1410
xsi:schemaLocation="http://www.oasis.org/tbs/1066-12-25/ D:\AllMaterial\OASIS-Sec-TC\Assertions.xsd">1411

<!-- Example 2.1.5 -->1412
<Assertion xsi:type="s0:AuthorizationDecisionAssertionType" AssertionID="http://www.bizexchange.test/assertion/AE0221"1413

Issuer="URN:dns-date:www.bizexchange.test:2001-01-03:19283">1414
<Decision>Permit</Decision>1415

</Assertion>1416
</s0:AssertionsPackage>1417

1418
Sample Request #21419
<?xml version="1.0" encoding="UTF-8"?>1420
<s0:SAMLRequest1421
xmlns:s0="http://www.oasis.org/tbs/1066-12-25/"1422
xmlns:s1="http://www.oasis.org/tbs/1066-12-25/s/"1423
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"1424
xsi:schemaLocation="http://www.oasis.org/tbs/1066-12-25/ D:\AllMaterial\OASIS-Sec-TC\Assertions.xsd">1425

<!-- example 2.1.4 Can Alice read finance with an attribute Assertion-->1426
<SAMLXQuery>1427

<AssertionsPackage>1428
FOR $S IN document("SampleAuthorityAssertionsList.xml")1429
WHERE $S/Resource = "http://store.carol.test/finance"1430
AND $S/Subject/NameID = "mailto:Alice@bizex.test"1431
AND $S/Permission = "READ"1432

<Assertion>1433
RETURN $S/Decision1434

</Assertion>1435
</AssertionsPackage>1436

</SAMLXQuery>1437
<s0:SubjectAssertionsPackage>1438
<Assertion xsi:type="s0:AttributeAssertionType">1439

<Subject>1440
<NameID>mailto:Alice@bizex.test</NameID>1441

</Subject>1442
<s1:Role>Admin</s1:Role>1443

</Assertion>1444
</s0:SubjectAssertionsPackage>1445

</s0:SAMLRequest>1446
1447

Sample Request #71448
<?xml version="1.0" encoding="UTF-8"?>1449
<s0:SAMLQuery1450
xmlns:s0="http://www.oasis.org/tbs/1066-12-25/"1451
xmlns:s1="http://www.oasis.org/tbs/1066-12-25/s/"1452
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"1453
xsi:schemaLocation="http://www.oasis.org/tbs/1066-12-25/ D:\AllMaterial\OASIS-Sec-TC\Assertions.xsd">1454

<!-- 7. The requestor sends a description of an assertion that it would like the responder to locate, retrieve and return. If successful, the1455
responder returns a success indication and an assertion that either exactly meets the requirements or is more general. If unsuccessful, the1456
responder returns a failure indication and (optionally) one or more assertions that are more specific than the one specified. The sample used is1457
Alice trying to read finance, and if she can't read finance or *, then return if she can read finance/f1-->1458
<!-- this example isn't quite right yet -->1459

<SAMLXQuery>1460
<AssertionsPackage>1461

<Assertion>1462
FOR $S IN document("SampleAuthorityAssertionsList.xml")1463
WHERE ($S/Resource = "http://store.carol.test/finance" OR $S/Resource = "http://store.carol.test/*")1464
AND $S/Subject/NameID = "mailto:Alice@bizex.test"1465

37

AND $S/Permission = "READ"1466
return $S/Decision1467
IF $S/Decision != "YES" then1468

FOR $T IN document("SampleAuthorityAssertionsList.xml")1469
WHERE $T/Resource = "http://store.carol.test/finance/f1"1470
AND $T/Subject/NameID = "mailto:Alice@bizex.test"1471
AND $T/Permission = "READ"1472
IF $T/Decision = "YES" then return1473

$T/Decision1474
</Assertion>1475

</AssertionsPackage>1476
1477

</SAMLXQuery>1478
</s0:SAMLQuery>1479

38

Discussion of Xquery1480

(Following are notes by Dave on advantages of XQuery.)1481
The key benefits to using XQuery are:1482

• Generic syntax, which allows for tighter cardinalities in SAML domain model (these 2 are linked)1483
• Arbitrary return values, no need for a responds element.1484
• Arbitrary searches and results including wildcards and booleans.1485
• The ability to add new queries without revving the server software. This pushes the ability to change1486

the queries to the client.1487
• The Assertions class diagram is simplified as the assertions are for facts only, rather than queries.1488

1489
The disadvantages of Xquery are:1490

• Developers have to learn another specification rather than just saml1491
• The Xquery syntax is too general for the queries that SAML needs, a very restrictive and simple syntax1492

would be adequate.1493
• Implementations are going to have to map Xquery syntax onto their own repositories1494
• The xml syntax for Xquery is quite verbose and difficult.1495

1496
The response to the disadvantages:1497

• The developers are going to have to learn a syntax anyways, why not use an industry standard one with1498
tooling and high probability of developer knowledge re-use.1499

• It seems that many people want complex queries and also we don’t want to overly restrict the queries1500
allowed. Should it happen that the requests/queries are very general, than this might be revisited.1501

• Implementations are going to have to map Xquery or any other syntax onto their repositories. Wouldn’t1502
mapping a general syntax rather than a specific syntax be easier for vendors?1503

• The xml syntax for xquery is verbose, but probably any kind of general syntax will be verbose. Xquery1504
has these as issues before it. Presumably they will be better equipped to create a simple xml syntax for1505
queries than SAML will be.1506

1507
IMHO, the biggest advantage of the use of XQuery is that it decouples the clients from the servers from a query1508
perspective. New queries from the client can be added without requiring a spec and server software change. It1509
allows extensibility from the clients. It pushes the ability to change queries from the server to the client. Under1510
the PHB model, any time we want to modify a query, we have to update the protocol (particularly the responds1511
element), the client and the server. Using Xqueries, just the client gets updated.1512

1513
So the big question is: do we want strongly-typed queries, meaning the spec & software get reved every time1514
there's a new query, or do we want weakly-typed queries.1515

1516
There are 2 alternatives to Xquery:1517

1. a generic assertion/claim like PHB has, with a results element.1518
2. Subtype each of the items in the class diagram for an input query, making the cardinalities optional.1519

1520
One of the reasons why the PHB style claim is so open-ended, is so that it can be used as a template for the1521
query. Say you want to find an authorization assertion (OM model) for a given subject/object combination. It's1522
got both subject, object, and permission. Now Permission is required in OM model. In PHB model, Permission1523

39

is optional. The reason is so that you can leave permission blank in a PHB query. This is the whole point about1524
cardinalities, that in phb's model you can never have cardinalities (as they might be left blank for the query)1525
whereas in OM you can because they are just used for the return.1526

1527
Now you could model it as a set of AssertionTemplates with no cardinalities, and then subtype to Assertion1528
with cardinalities, but that adds even more types. (option #2)1529

1530
Further, because of the template model, you have no control over the operators. Phil has been desperately1531
wanting wildcards, and this gives it.1532

1533
Take sample query #8, if SAML does not support this operation exactly, then a rev of the SERVER will have to1534
happpen to add the query mechanism. With XQuery, you can simply change the query that you send. So it1535
gives Clients much more flexibility1536

1537
Another example is #7. Now this is easier to code up in XQuery than adding some new parameter (to say1538
which extra specifications are to be used in the unsuccessful case) to the responds element.1539

1540
Another reason why query is good is because there is no need to create a responds element. The whole point of1541
the responds element is that it specifies what the requestor wants returned. But that means that the types of1542
responses are rigidly defined. There is one out with the use of a schema URI, but that seems a strange way to1543
do it. It also doesn't cover the if/then/else style of return decision. With XQuery you can return any part of the1544
results that you've found, like just the Decision or the found Assertions or whatever.1545

40

Schema Extension Techniques1546

(Following are notes by Dave on how to do the extension of Permission values.)1547
Trying to get extension in the Permissions has been many hours, and ultimately I resorted to a technique I didn’t1548
really like.1549
The method that finally worked was Method 1(typeExtension) in the same namespace:1550

1551
<PermissionList>1552
<BasePermission>R</BasePermission>1553
<ExtendedPermission>Provision</BasePermission>1554

1555
The options for adding a Permission type, say Provision, to Assertion are:1556

• Extend the set of names allowed in an enumeration List - <Permissions>R W Provision</Permissions>.1557
This doesn’t work because the enumeration value space can’t be extended.1558

• specification of different namespaced elements -1559
<PermissionList>1560
<s0:Permission>W</s0:Permission>1561
<s1:Permission>Provision</s1:Permission>.1562
I can’t recall why this didn’t work1563

• method 4 (dangling namespace) from xfront.1564
<PermissionList>1565
<Permission>W</Permission>1566
<Permission>Provision</Permission>1567
XMLSpy illegally follows the namespace declaration in the include.1568

• Method 3 (abstract base type with type substitution) from xfront1569
<PermissionList>1570
<Permission xsi:type=”s0:PermissionBaseType”>W</Permission>1571
<Permission xsi:type=”s1:PermissionExtensionType”>Provision</Permission>1572
XMLSpy gives the dreaded internal error on this case, I think because the Permission is a1573
simpleContent.1574

• Method 1(typeExtension) in different namespaces1575
<PermissionList>1576
<s0:BasePermission>R</s0:BasePermission>1577
<s1:ExtendedPermission>Provision</s1:BasePermission>1578

1579

41

PHB/Core0.7 Class diagram1580
The following is a class diagram representing Core 0.71581

Claim
(Atom)

Binding

-CommonName
-NameID

Subject

Resource

Object

-Protocol
-NameID
-AuthData
-KeyInfo

Authenticator

* *

* 1

* *

*1

-Version
-AssertionID
-Issuer
-IssueInstant
-ValidityInterval

Assertion
(Molecule)

*

*

-Permission

Decision

-Audience

Conditions

*

*

Advice

*

**

*

-RequestID
-AssertionID
-ValidityInterval

SAMLQuery

*

*

*

*

*

*

Respond

*

*

-requestID
SAMLQueryResponse

*

**

*

**

Attribute Role Authorization

*
*

*
*

*
*

Permission

* *

1582

42

SAML Request/Response Protocols1583

The basic data objects of the SAML protocol model are "Assertions" and "References" (to Assertions).1584
Assertions are of two different types: "authentication" and "attribute". The resulting four data objects, in their1585
current versions, are represented in the SAML namespace. Syntax definitions for the various types of assertion1586
can be found elsewhere.1587

(Note: the decision assertion is eliminated, by allowing the PEP to request an attribute assertion (or reference1588
thereto) that affirms the question to be decided (e.g. such-and-such a Principal occupies such-and-such a role, or1589
such-and-such a Principal is permitted to perform such-and-such an action on such-and-such an object. If the1590
PDP returns the requested assertion (or reference thereto), without modification, it has effectively answered1591
"Yes" to the question).1592

The SAML protocol specification defines a Request/Response pair of messages by which the Requestor1593
requests that the Responder issue an assertion of a specified type. If a suitable assertion already exists, then that1594
assertion may be returned in response to the request, without the responder having to create a new one. Even1595
for the case where the PEP requests that the PDP return a specified list of attributes for an identified Principal,1596
the response is treated as an assertion whose authenticity is vouched for by the PDP.1597

This scope does not include the request by a Principal to a PEP for access to a resource. This aspect will be1598
addressed directly by the "Bindings" working group.1599

The following entities in the protocol model may adopt the role of Requestor in the exchange: Principal, PEP,1600
PDP and Authority. The following entities in the protocol model may adopt the role of Responder in the1601
exchange: Authority and PDP. Table 1 shows typical applications of the messages.1602

43

1603

Requestor Responder Typical application

Principal Authority The Authority returns an authentication or attribute assertion (or reference thereto)

with the Principal as subject

Authority PDP The PDP returns an authentication or attribute assertion (or reference thereto)

with a Principal designated by the Authority as subject

PEP PDP The PDP returns an attribute assertion (or reference thereto) with a Principal

designated by the PEP as subject

PDP Authority The Authority returns an authentication or attribute assertion with a Principal

designated by the PDP as subject

Table 1 - Typical applications of the request/response messages1604

The request is in the form of a "prototype" of the required assertion. Each attribute of the required assertion is1605
represented in the prototype by a "type"/"value" pair. The requestor may omit the "value" field, if it does not1606
know, or care, what value should be assigned to the corresponding element in the resulting assertion. The1607
responder may modify the requested values. It may also omit requested elements and it may add additional1608
elements. These actions are reflected in the "status" element of the response.1609

In addition to the prototype assertion, the Requestor may supply some or all of the information required by the1610
Responder to prepare the requested assertion. The additional information may take the form of:1611

• Assertions of any type,1612

• References to assertions of any type, and1613

• Information about the Principal (such as its posited name and authenticator).1614

(Note: XML schemas are used here to define the contents of the request and response messages. However, it is1615
not the intention that messages conformant with these schemas will actually form the messages exchanged1616
between parties in the SAML model. The precise contents of messages will depend on the transport protocols1617
to which they are bound, and it is the task of the "Bindings" working group to define the precise message1618
contents for each transport protocol. The schemas defined here serve merely as guidance to the "Bindings"1619
working group.)1620

44

There are two basic message types, the Request message and the corresponding Response message. The1621
Request message contains the following fields.1622

<element name = "RequestIdentifier" type = "string"/>1623
<element name = "PrototypeAssertionsList">1624

<element name = "PrototypeAssertion" minOccurs = "0" maxOccurs = "unbounded" >1625
<complexType>1626

<sequence>1627
<element name = "FieldType" type = "string"/>1628
<element name = "FieldValue" type = " … " minOccurs = "0"/>1629

</sequence>1630
</complexType>1631

</element>1632
</element>1633
<element name = "SupportingInformation" type = "SupportingInformation"/>1634
</element>1635

1636
The FieldType string is the name of the element requested to be present in the assertion returned by the1637
responder.1638
The FieldValue value is the value requested for that element.1639

1640
(Note: an alternative way to handle this is to include a conformant assertion whose field values are set to some1641
special value that indicates they are to be completed.)1642

1643
<element name = "SupportingInformation">1644

<complexType>1645
<sequence>1646

<element name = "Reference" type = "string" minOccurs = "0" maxOccurs = "1" />1647
<element name = "Assertion" type = "SamlAssertion" minOccurs = "0" maxOccurs =1648

"unbounded"/>1649
<element name = "Principal" type = "Principal" minOccurs = "0" maxOccurs = "1"/>1650

</sequence>1651
</complexType>1652

</element>1653
1654

<element name = "Principal">1655
<complexType>1656

<sequence>1657
<element name = "Name" type = "Name" minOccurs = "0" maxOccurs = "1" />1658
<element name = "Authenticator" type = "Authenticator" minOccurs = "0" maxOccurs =1659

"unbounded"/>1660
</sequence>1661

</complexType>1662
</element>1663

1664

45

The "Authenticator" element is yet to be defined. However, it must be capable of accommodating a salted1665
password digest, a cryptographic challenge/response pair or a document/signature pair.1666

1667

The Response message contains the following fields.1668

1669
<element name = "RequestIdentifier" type = "string"/>1670
<element name = "AssertionsList">1671

<element name = "Assertion" minOccurs = "0" maxOccurs = "unbounded">1672
<complexType>1673

<sequence>1674
<element name = "Assertion" type = "SamlAssertion"/>1675
<element name = "Status" type = "Status"/>1676

</sequence>1677
</complexType>1678

</element>1679
</element>1680
</element>1681

1682

Protocol Model1683
Editor’s note: some of the material in this section has been superseded by the material above. However some1684
of the material below has not yet been incorporated into the Protocols text, so it has been included here for1685
completeness.1686

The model contains eight elements:1687

The Principal,1688

The Primary Domain,1689

The Secondary Domain,1690

The Authentication Authority,1691

The Authorization Authority,1692

The Session Authority,1693

The Policy Enforcement Point, and1694

The Policy Decision Point.1695

The Principal is an entity that requires controlled access to resources in a Secondary Domain.1696

The Primary Domain is an administrative domain in which the Principal can be authenticated without1697
assistance from any other domain.1698

46

The Secondary Domain is an administrative domain in which the Principal cannot be authenticated except with1699
assistance from a Primary Domain.1700

The Principal has at least one name in a namespace sub-tree administered by the Authentication Authority in1701
the Primary Domain. The Authentication Authority binds the Principal's name to an authentication mechanism1702
in a "name assertion".1703

The Principal may have one or more entitlements in an entitlement-space sub-tree administered by the1704
Authorization Authority in the Primary Domain. The Authorization Authority binds the Principal's name to a1705
name assertion in an "entitlement assertion".1706

The Principal may have a session state in a session state-space sub-tree administered by the Session Authority.1707
The Session Authority binds the Principal's session state to a name assertion in a "session assertion".1708

The Policy Enforcement Point authenticates the Principal with the assistance of a Policy Decision Point and1709
controls its access to resources in the Secondary Domain.1710

The Policy Decision Point authenticates the Principal and determines its eligibility to access resources in the1711
Secondary Domain on the basis of the assertions.1712

Figure 1 indicates which elements of the model communicate with which other elements.1713

Authentication
Authority

Session
Authority

Principal

Authorization
Authority

Policy
Decision

Point

Policy
Enforcement

Point

Primary Domain Secondary
Domain

1714

Figure 1 - Model1715

There are seven authentication data structures:1716

AuthnNotification,1717

AuthnAcknowlegment,1718

AuthnRequest,1719

47

AuthnResponse,1720

AuthnQuery,1721

AuthnResult and1722

Ref(AuthnNotification).1723

There are seven authorization data structures:1724

AuthzNotification,1725

AuthzAcknowlegment,1726

AuthzRequest,1727

AuthzResponse,1728

AuthzQuery,1729

AuthzResult and1730

Ref(AuthzNotification).1731

There are seven session data structures:1732

SessionNotification,1733

SessionAcknowlegment,1734

SessionRequest,1735

SessionResponse,1736

SessionQuery,1737

SessionResult and1738

Ref(SessionNotification).1739

For the purpose of explaining the model, only the authentication protocols will be described; the authorization1740
and session data structures are used in an analogous fashion. In the authorization variants, the Policy Decision1741
Point is responsible for obtaining the authorization policy definition appropriate to the specified action and the1742
environmental variables appropriate to the policy. These two data structures are out of scope for the current1743
version of the specification.1744

The Ref(AuthnNotification) data structure is defined in the Bindings section of the specification, not in this, the1745
Protocols, section. The step in which the Principal authenticates itself to the Policy Enforcement Point is not1746
defined in this specification. However, it is a requirement of this step that it provide a posited name for the1747

48

Principal and an authenticator. The posited name shall include a domain name, identifying the Authentication1748
Authority in the Principal's Primary Domain, and a Principal name. The authenticator may be in any one of a1749
number of forms, including a password, a symmetric-key challenge/response pair, an asymmetric-key1750
challenge/response pair or a document/signature pair.1751

Discovery of services in a remote domain is outside the scope of this specification.1752

Protocol exchanges1753

Principal-centered direct protocol1754

This protocol may be used when the Principal is capable of relaying messages of unlimited length between the1755
Primary Domain and the Secondary Domain, and when the Secondary Domain is not capable of communicating1756
with the Primary Domain directly at the time at which the Principal communicates with the Secondary Domain.1757

Figure 2 shows the Principal-centered direct protocol.1758

Principal Authentication
Authority

Policy
Enforcement

Point

Policy
Decision

Point

AuthnNotification1.
2.
3.
4.
5.

AuthnNotification

AuthnQuery

AuthnResult

authenticate

1759

Figure 2 - Principal-centered direct protocol1760

It proceeds by the following steps.1761

1. The Principal obtains a name assertion from an Authentication Authority in the Primary Domain in an1762
AuthnNotification message. The authentication of the Principal by the Authentication Authority is outside1763
the scope of this specification.1764

2. The Principal conducts an authentication exchange with the Policy Enforcement Point. However, the Policy1765
Enforcement Point is not capable of completing the authentication without the help of the Policy Decision1766
Point.1767

3. The Principal provides the name assertion in an AuthnNotification message.1768

4. The Policy Enforcement Point sends the posited name, the authenticator and the name assertion to the1769
Policy Decision Point in an AuthnQuery message.1770

5. The Policy Decision Point authenticates the Principal using the posited name, authenticator and name1771
assertion provided in step 4 and returns the result to the Policy Enforcement Point in an AuthnResult1772
message.1773

49

Principal-centered indirect protocol1774

This protocol may be used when the Principal is only capable of relaying messages of limited size from the1775
Primary Domain to the Secondary Domain and the Secondary Domain is capable of communicating with the1776
Primary Domain at the time at which the Principal communicates with the Secondary Domain.1777

Figure 3 shows the Principal-centered indirect protocol.1778

1779

Principal Authentication
Authority

Policy
Enforcement

Point

Policy
Decision

Point

Ref(AuthnNotification)1.
2.
3.
4.
5.
6.
7.

Ref(AuthnNotification)

AuthnRequest

AuthnResponse

authenticate

AuthnQuery

AuthnResult

1780

Figure 3 - Principal-centered indirect protocol1781

It proceeds by the following steps.1782

1. The Principal obtains a reference to a name assertion from an Authentication Authority in the Primary1783
Domain in the Ref(AuthnNotification) message. As in the previous protocol, the authentication of the1784
Principal by the Authentication Authority is out of scope.1785

2. The Principal conducts an authentication exchange with the Policy Enforcement Point. As before, the1786
Policy Enforcement Point is not capable of completing the authentication without the help of the Policy1787
Decision Point.1788

3. The Principal provides the reference to the name assertion in the Ref(AuthnNotification) message.1789

4. The Policy Enforcement Point sends the posited name, the authenticator and the reference to the name1790
assertion to the Policy Decision Point in the AuthnQuery message.1791

5. The Policy Decision Point sends a request for the name assertion to the Authentication Authority in the1792
Primary Domain in the AuthnRequest message.1793

6. The Authentication Authority sends the name assertion in an AuthnResponse message.1794

7. The Policy Decision Point authenticates the Principal and returns the result to the Policy Enforcement Point1795
in an AuthnResult message.1796

50

Pull protocol1797

This protocol may be used when the Principal communicates with the Secondary Domain without being1798
directed by the Primary Domain.1799

Figure 4 shows the pull protocol.1800

Principal Authentication
Authority

Policy
Enforcement

Point

Policy
Decision

Point

1.
2.
3.
4.
5.

AuthnQuery

AuthnResponse

AuthnRequest

authenticate

AuthnResult
1801

Figure 4 - Pull protocol1802

It proceeds by the following steps.1803

1. The Principal conducts an authentication exchange with the Policy Enforcement Point. As before, the1804
Policy Enforcement Point is not capable of completing the authentication without the help of the Policy1805
Decision Point.1806

2. The Policy Enforcement Point sends the posited name and the authenticator to the Policy Decision Point in1807
the AuthnQuery message.1808

3. The Policy Decision Point sends a request for the name assertion to the Authentication Authority in the1809
Primary Domain.1810

4. The Authentication Authority sends the name assertion in an AuthnResponse message.1811

5. The Policy Decision Point authenticates the Principal using the posited name and authenticator obtained1812
from the Policy Enforcement Point in step 2 and the name assertion obtained from the Authentication1813
Authority in step 4 and returns the result to the Policy Enforcement Point in the AuthnResult message.1814

Push protocol1815

This protocol may be used when the Principal communicates with the Secondary Domain under the direction of1816
the Primary Domain. Because it requires the Policy Decision Point to maintain state between communication1817
sessions with the Authentication Authority and the Principal, it is less favoured than the Principal-centered1818
protocols.1819

Figure 5 shows the Push protocol.1820

1821

51

Principal Authentication
Authority

Policy
Enforcement

Point

Policy
Decision

Point

1.
2.
3.
4.
5.

AuthnQuery

AuthnNotification

AuthnAcknowledgment

authenticate

AuthnResult

1822

Figure 5 - Push Protocol1823

It proceeds by the following steps.1824

1. The Authentication Authority sends a name assertion in an AuthnNotification message to the Policy1825
Decision Point in the Secondary Domain.1826

2. The Policy Decision Point sends an acknowledgment for the name assertion to the Authentication Authority1827
in the Primary Domain in an AuthnAcknowledgment message.1828

3. The Principal conducts an authentication exchange with the Policy Enforcement Point. As before, the1829
Policy Enforcement Point is not capable of completing the authentication without the help of the Policy1830
Decision Point.1831

4. The Policy Enforcement Point sends the posited name and the authenticator to the Policy Decision Point in1832
an AuthnQuery message.1833

5. The Policy Decision Point authenticates the Principal using the name assertion obtained in step 2 and the1834
posited name and authenticator obtained in step 4 and returns the result to the Policy Enforcement Point in1835
an AuthnResult message.1836

Primary domain session-close protocol1837

This protocol may be used to notify Secondary Domains when a Principal logs off in the Primary Domain.1838

Figure 6 shows the Primary Domain session-close protocol.1839

Principal Authentication
Authority

Policy
Enforcement

Point

Policy
Decision

Point

1.
2.
3.

SessionNotification

SessionAcknowledgment

Session close

1840

Figure 6 - Primary domain session close protocol1841

It proceeds by the following steps.1842

52

1. The Principal closes the existing session with the Authentication Authority.1843

2. The Authentication Authority sends a SessionnNotification message to the Policy Decision Point in the1844
Secondary Domain indicating that the Principal has closed the session.1845

3. The Policy Decision Point sends an acknowledgment to the Authentication Authority in the Primary1846
Domain using the SessionAcknowledgment message.1847

Note: the Policy Enforcement Point should confirm the session status of the Principal with the Policy Decision1848
Point before processing each exchange between itself and the Principal. In this way, the session closure will be1849
effective immediately.1850

Secondary domain session-close protocol1851

This protocol may be used when the Principal logs off in the Secondary Domain.1852

Figure 7 shows the Secondary Domain session-close protocol.1853

Principal Authentication
Authority

Policy
Enforcement

Point

Policy
Decision

Point

1.
2.
3.
4.

SessionNotification

SessionAcknowledgment

SessionNotification

Session close

1854

Figure 7 - Secondary domain session close protocol1855

1856

It proceeds by the following steps.1857

1. The Principal closes the existing session with the Policy Enforcement Point.1858

2. The Policy Enforcement Point notifies the Policy Decision Point in a SessionNotification message.1859

3. The Policy Decision Point sends a SessionnNotification message to the Authentication Authority in the1860
Primary Domain, indicating that the Principal has closed the session.1861

4. The Authentication Authority sends a SessionAcknowledgment message to the Policy Decision Point in the1862
Secondary Domain.1863

Data structures1864

Note: there are separate data structures for authentication, authorization and session exchanges. If an entity1865
needs information on any combination of name, entitlements and session status, it must conduct separate1866
protocols for each. However, these separate protocols may proceed in parallel.1867

53

Schema for the data structures can be found in the Schema section of this specification.1868

AuthnNotification1869

The AuthnNotification message is used in the Principal-centered direct authentication protocol to send the name1870
assertion from the Authentication Authority to the Principal and from the Principal to the Policy Enforcement1871
Point. It is also used in the Push protocol to send the name assertion from the Authentication Authority to the1872
Policy Decision Point. It contains the following information.1873

version - this specification version number.1874

notification-identifier - an identifier assigned by the message originator. It must be unique among all1875
the outstanding AuthnNotification messages.1876

name-assertion - the name assertion.1877

sender - the name of the sender, as agreed between the sender and receiver during initialization. It must1878
be unique among all the sender names recognized by the receiver.1879

intended-receiver - the name of the receiver, as agreed between the sender and receiver during1880
initialization. It must be unique among all the receiver names recognized by the sender.1881

Note: the name assertion contains identifiers for the Authentication Authority and the Principal. It also includes1882
validity dates and authentication information (e.g. a public key).1883

AuthnAcknowlegment1884

The AuthnAcknowlegment message is used in the Push protocol for the Policy Decision Point to acknowledge1885
receipt of the name assertion from the Authentication Authority. It contains the following information.1886

version - this specification version number.1887

notification-identifier - the notification identifier supplied in the corresponding AuthnNotification1888
message.1889

success-indicator - an indication of whether the receiver was able to process the AuthnNotification1890
message.1891

error-code - error code.1892

The following error codes shall be supported.1893

Unsupported version1894

Unsupported authentication method1895

AuthnRequest1896

The AuthnRequest message is used in the Principal-centered indirect protocol and the Pull protocol for the1897
Policy Decision Point to request the name assertion from the Authentication Authority. It contains the1898
following information.1899

54

version - this specification version number.1900

request-identifier - an identifier assigned by the message originator. It must be unique among all the1901
outstanding AuthnRequest messages.1902

posited-name - the Primary Domain and Principal names claimed by the Principal. Optional.1903

reference to name assertion - a reference to the name assertion. Optional, if the posited name is not1904
present, then this field must be present.1905

sender - the name of the sender, as agreed between the sender and receiver during initialization. It must1906
be unique among all the sender names recognized by the receiver.1907

intended-receiver - the name of the receiver, as agreed between the sender and receiver during1908
initialization. It must be unique among all the receiver names recognized by the sender.1909

Note: the Authentication Authority receives no evidence that the Principal has correctly authenticated to the1910
Policy Enforcement Point.1911

AuthnResponse1912

The AuthnResponse message is used in the Principal-centered indirect protocol and the Pull protocol for the1913
Authentication Authority to return the name assertion to the Policy Decision Point. It contains the following1914
information.1915

version - this specification version number.1916

request-identifier - the request identifier supplied in the corresponding AuthnRequest message.1917

name-assertion - the name assertion.1918

success indicator1919

error code1920

AuthnQuery1921

This protocol is used in the Principal-centered direct and indirect protocols and the Pull and Push protocols for1922
the Policy Enforcement Point to request the Policy Decision Point to perform the authentication of the1923
Principal.1924

version - this specification version number.1925

request-identifier - an identifier assigned by the message originator. It must be unique among all the1926
outstanding AuthnQuery messages.1927

posited name - the name claimed by the Principal.1928

authenticator - the data used in the authentication exchange between the Policy Enforcement Point and1929
the Principal. This may be a user-name/password combination, a symmetric-key challenge/response1930
combination, an asymmetric-key challenge response combination or a document/signature combination.1931

55

name-assertion - the name assertion. Optional.1932

reference to name assertion - a reference to a name assertion. Optional, at least one of "posited name",1933
"name assertion" or "reference to name assertion" must be present.1934

AuthnResult1935

This protocol is used in the Principal-centered direct and indirect protocols and the Pull and Push protocols for1936
the Policy Decision Point to return the result of the authentication of the Principal to the Policy Enforcement1937
Point.1938

version - this specification version number.1939

request-identifier - the request identifier from the corresponding AuthnQuery message.1940

success indicator1941

error code1942

AuthzNotification1943

The AuthzNotification message is used in the Principal-centered direct authorization protocol to send the1944
entitlement assertion from the Authorization Authority to the Principal and from the Principal to the Policy1945
Enforcement Point. It is also used in the Push protocol to send the entitlement assertion from the Authorization1946
Authority to the Policy Decision Point. It contains the following information.1947

version - this specification version number.1948

notification-identifier - an identifier assigned by the message originator. It must be unique among all1949
the outstanding AuthzNotification messages.1950

entitlement-assertion - the entitlement assertion.1951

sender - the name of the sender, as agreed between the sender and receiver during initialization. It must1952
be unique among all the sender names recognized by the receiver.1953

intended-receiver - the name of the receiver, as agreed between the sender and receiver during1954
initialization. It must be unique among all the receiver names recognized by the sender.1955

Note: the entitlement assertion contains an identifier for the Authorization Authority and a reference to the1956
associated Principal name-assertion. It also contains validity dates.1957

AuthzAcknowlegment1958

The AuthzAcknowlegment message is used in the Push protocol for the Policy Decision Point to acknowledge1959
receipt of the entitlement assertion from the Authorization Authority. It contains the following information.1960

version - this specification version number.1961

notification-identifier - the notification identifier supplied in the corresponding AuthzNotification1962
message.1963

56

success-indicator - an indication of whether the receiver was able to process the AuthzNotification1964
message.1965

error-code - error code.1966

AuthzRequest1967

The AuthzRequest message is used in the Principal-centered indirect protocol and the Pull protocol for the1968
Policy Decision Point to request the entitlement assertion from the Authentication Authority. It contains the1969
following information.1970

version - this specification version number.1971

request-identifier - an identifier assigned by the message originator. It must be unique among all the1972
outstanding AuthzRequest messages.1973

posited name - the posited name of the Principal. Optional.1974

reference to entitlement assertion - reference to an entitlement assertion. Optional. If the posited name1975
is absent, then this field must be present.1976

sender - the name of the sender, as agreed between the sender and receiver during initialization. It must1977
be unique among all the sender names recognized by the receiver.1978

intended-receiver - the name of the receiver, as agreed between the sender and receiver during1979
initialization. It must be unique among all the receiver names recognized by the sender.1980

Note: the Authorization Authority receives no evidence that the Principal correctly authenticated to the Policy1981
Enforcement Point. In the Pull protocol, all suitable entitlement assertions are requested.1982

AuthzResponse1983

The AuthzResponse message is used in the Principal-centered indirect protocol and the Pull protocol for the1984
Authorization Authority to return the entitlement assertion to the Policy Decision Point. It contains the1985
following information.1986

version - this specification version number.1987

request-identifier - the request identifier supplied in the corresponding AuthzRequest message.1988

entitlement assertion - the entitlement assertion.1989

success indicator1990

error code1991

AuthzQuery1992

This protocol is used in the Principal-centered direct and indirect protocols and the Pull and Push protocols for1993
the Policy Enforcement Point to request the Policy Decision Point to confirm the authorization of the Principal.1994

version - this specification version number.1995

57

request-identifier - an identifier assigned by the message originator. It must be unique among all the1996
outstanding AuthzQuery messages.1997

action - a compound variable comprising the name of the object method and a sensitivity value for the1998
object that the Principal is attempting to access.1999

principal name - the authenticated or claimed name of the Principal. Optional. Must be identical to the2000
posited name in any accompanying AuthnQuery message.2001

entitlement-assertion - the entitlement assertion. Optional.2002

reference to the entitlement assertion - a reference to the entitlement assertion. Optional, it should be2003
present if the entitlement assertion is absent. Optional. At least one of "principal name", "ntitlement2004
assertion" or "reference to entitlement assertion" must be present.2005

AuthzResult2006

This protocol is used in the Principal-centered direct and indirect protocols and the Pull and Push protocols for2007
the Policy Decision Point to return the result of the authorization of the Principal to the Policy Enforcement2008
Point.2009

version - this specification version number.2010

request-identifier - the request identifier supplied in the corresponding AuthzRequest message.2011

success indicator2012

error code2013

SessionNotification2014

The SessionNotification message is used in the Principal-centered direct session protocol to send the session2015
assertion from the Session Authority to the Principal and from the Principal to the Policy Enforcement Point. It2016
is also used in the Push protocol to send the session assertion from the Session Authority to the Policy Decision2017
Point. It is also used in the Primary Domain session close and Secondary Domain session close protocols to2018
indicate that the session with the Principal has been closed. It contains the following information.2019

version - this specification version number.2020

notification-identifier - an identifier assigned by the message originator. It must be unique among all2021
the outstanding SessionNotification messages.2022

session-assertion - the session assertion.2023

sender - the name of the sender, as agreed between the sender and receiver during initialization. It must2024
be unique among all the sender names recognized by the receiver.2025

intended-receiver - the name of the receiver, as agreed between the sender and receiver during2026
initialization. It must be unique among all the receiver names recognized by the sender.2027

58

Note: the session assertion identifies the Principal either directly or by reference to a name assertion. It also2028
contains an indication of the Principal's session state (e.g. "session closed").2029

SessionAcknowlegment2030

The SessionAcknowlegment message is used in the Push protocol for the Policy Decision Point to acknowledge2031
receipt of the session assertion from the Session Authority. It is also used in the Primary Domain session close2032
and Secondary Domain session close protocols to acknowledge that the session with the Principal has been2033
closed. It contains the following information.2034

version - this specification version number.2035

notification-identifier - the notification identifier supplied in the corresponding SessionNotification2036
message.2037

success-indicator - an indication of whether the receiver was able to process the SessionNotification2038
message.2039

error-code - error code.2040

The following error codes shall be supported.2041

Unsupported version2042

SessionRequest2043

The SessionRequest message is used in the Principal-centered indirect protocol and the Pull protocol for the2044
Policy Decision Point to request the session assertion from the Session Authority. It contains the following2045
information.2046

version - this specification version number.2047

request-identifier - an identifier assigned by the message originator. It must be unique among all the2048
outstanding SessionRequest messages.2049

principal name - the name of the Principal. Optional.2050

reference to session assertion - reference to the session assertion. Optional, is the principal name field is2051
absent, then this field must be present.2052

sender - the name of the sender, as agreed between the sender and receiver during initialization. It must2053
be unique among all the sender names recognized by the receiver.2054

intended-receiver - the name of the receiver, as agreed between the sender and receiver during2055
initialization. It must be unique among all the receiver names recognized by the sender.2056

Note: the Session Authority receives no evidence that the Principal correctly authenticated to the Policy2057
Enforcement Point.2058

59

SessionResponse2059

The SessionResponse message is used in the Principal-centered indirect protocol and the Pull protocol for the2060
Session Authority to return the session assertion to the Policy Decision Point. It contains the following2061
information.2062

version - this specification version number.2063

request-identifier - the notification identifier supplied in the corresponding SessionRequest message.2064

session-assertion - the session assertion.2065

success indication2066

error code2067

SessionQuery2068

This protocol is used in the Principal-centered direct and indirect protocols and the Pull and Push protocols for2069
the Policy Enforcement Point to request the Policy Decision Point to confirm the session status of the Principal.2070

version - this specification version number.2071

request-identifier - an identifier assigned by the message originator. It must be unique among all the2072
outstanding SessionQuery messages.2073

principal name - the authenticated or claimed name of the Principal. Optional. Must be identical to the2074
posited name in any associated AuthnQuery message.2075

session assertion - a session assertion. Optional.2076

reference to session assertion - a reference to a session assertion. Optional, at least one of "principal2077
name", "session assertion" or "reference to session assertion" must be present.2078

SessionResult2079

This protocol is used in the Principal-centered direct and indirect protocols and the Pull and Push protocols for2080
the Policy Decision Point to return the result of the status evaluation of the Principal to the Policy Enforcement2081
Point.2082

version - this specification version number.2083

request-identifier - the identifier from the corresponding SessionQuery message.2084

session assertion2085

success indicator2086

error code2087

60

Note: the session assertion returned in the SessionResult message may be integrity-protected by means other2088
than XML Digital Signature. Alternatively, it may protected by the XML Digital Signature mechanism, signed2089
by the Policy Decision Point.2090

Protocol Security considerations2091

With the exception of the session assertion in the SessionResult message, all assertions must be protected for2092
integrity and authenticity using the XML Digital Signature mechanism. In addition, all protocol exchanges2093
must be protected for integrity and authenticity. Mechanisms other than XML Digital Signature may be used2094
for this latter purpose.2095

The exchange of Authority keys, certificates and certificate status information between domains is out of scope2096
for this specification.2097

2098

61

Conformance2099

2100

The SAML Conformance Clause2101

The objectives of the SAML Conformance Clause are to:2102
a) Ensure a common understanding of conformance and what is required to claim conformance;2103
b) Promote interoperability for the exchange of authentication and authorization information2104
c) Promote uniformity in the development of conformance tests.2105

2106
 The conformance clause specifies explicitly all the requirements that have to be satisfied to claim2107
conformance to the SAML Specification. These requirements can be applied at varying levels, so that a2108
given implementation or application of the SAML Specification can achieve clearly-defined conformance2109
with all or part of the entire set of requirements.2110

2111
SAML conformance provides for both validation and certification. Validation may be done without2112
certification, especially for such purposes as self-test. An implementer who has validated SAML2113
conformance by means of self-test cannot legitimately use the term “certified for SAML conformance”.2114
However, validation may be all that is required for the particular purposes for which an implementer is2115
using SAML.2116

2117
Certification may require validation by a third-party or through self-test or by some automatic means e.g.2118
by running thru a server in a lab, as determined by the certification authority.2119

2120
The SAML conformance is expressed by three orthogonal dimensions.2121

• The first dimension is a partition, (a.k.a. profile) which is a subset of the overall specifications that2122
includes all of the functionality necessary to satisfy the requirements of a particular community of2123
users. The authorities for SAML are authentication authority, authorization authority, attribute2124
authority, session authority, Policy decision authority and policy enforcement authority.2125

• The second dimension is the role of a system – consumer, producer or producer-consumer.2126
• The third dimension is the mapping of the assertions to a binding viz http, xmlp, soap, ebXML et al.2127

2128
Conformance Nomenclature2129

2130
The nomenclature for expressing SAML conformance would be two SAML conformance matrices as2131
follows:2132

1. Partition-Role Table :2133
2134

Partition Consumer Producer Producer/Consumer
Authentication authority y Y y
Authorization authority y Y y
Attribute authority y Y y
Session authority y Y y
Policy decision authority y Y y
Policy enforcement authority y Y y

62

2135
2. Partition-Bindings Table:2136

2137
Partition http xmlp SOA

P
BEE

P
Authentication authority y y y Y
Authorization authority y y y Y
Attribute authority y y y Y
Session authority y y y Y
Policy decision authority y y y Y
Policy enforcement authority y y y Y

2138
Mandatory/Optional:2139

A system can choose to implement any or all of the partitions as per table 1, as a producer of SAML2140
assertions, a consumer of SAML assertions or both. For each partition, role, binding combination (i.e., cell2141
in the table) all functionality is mandatory. i.e. the system should support all SAML assertions related to2142
that partition. It is optional as to which partition, role, binding combinations are supported (implemented).2143
In short, as an example, if a system describes itself as conforming to a SAML Authorization authority,2144
producer-consumer over http and SOAP, it has to consume and produce *all* SAML authentication2145
assertions and be able to support the http and SOAP bindings described in the SAML specifications.2146

2147
Extensions:2148

• Extensions shall not re-define semantics for existing functions2149
• Extensions shall not alter the specified behavior of interfaces defined in this standard2150
• Extensions may add additional behaviors2151
• Extensions shall not cause standard-conforming functions (i.e., functions that do not use the2152

extensions) to execute incorrectly.2153
SAML assertions can be extended so long as the above conditions are met. It is requested that, if a system2154
is extending the SAML assertions,2155

• The mechanism for determining application conformance and the extensions shall be clearly2156
described in the documentation, and the extensions shall be marked as such;2157

• Extensions shall follow the spirit, principles and guidelines of the SAML specification, that is, the2158
specifications must be extended in a standard manner as defined in the extension fields.2159

• In the case where an implementation has added additional behaviors, the implementation shall2160
provide a mechanism whereby a conforming application shall be recognized as such, and be2161
executed in an environment that supports the functional behavior defined in this standard2162

Note : Extensions are outside the scope of conformance. There are no mechanisms specified to validate and2163
verify the extensions. This section contains the recommended guidelines for extensions.2164

2165
Alternate approaches2166

The different transport mechanisms are covered under the bindings dimension.2167

Authorities2168
<Describe the authorities and relevant use case sections>2169

63

Roles2170

<Describe the roles and relevant use case sections>2171

Bindings2172

<Describe the bindings and relevant use cases sections>2173

SAML Conformance Program2174

The Conformance Program is described in detail in the separate SAML Conformance Program Specification2175
V1.0. This document describes the tests required for validation and/or certification at a given profile and level,2176
the procedure for running those tests, and the resources available to assist in validating or certifying2177
implementations and applications.2178

64

2179

Things To Do (Conformance)2180
2181

1. There might be no bindings for an assertion, ie embedded assertions. Hoe can we specify and validate2182
conformance?2183

2. Is partition right word ? subset ? profile ?2184

3. In each partition, should we define the core that is required and then the additional elements that a2185
vendor can support for that partition? Now the granularity is a partition.2186

2187

65

References2188

[Kerberos] TBS2189

[SAML-USE] TBS2190

[PKCS1] Kaliski, B., PKCS #1: RSA Encryption Version 2.0, RSA Laboratories, also IETF RFC2191
2437, October 1998.2192

[RFC-2104] Krawczyk, H., Bellare, M. and R. Canetti, HMAC: Keyed Hashing for Message2193
Authentication, IETF RFC 2104, February 1997.2194

[SOAP] D. Box, D Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. Frystyk Nielsen, S2195
Thatte, D. Winer. Simple Object Access Protocol (SOAP) 1.1, W3C Note 08 May 2000,2196
http://www.w3.org/TR/SOAP2197

[WSSL] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, Web Services Description2198
Language (WSDL) 1.0 September 25, 2000,2199
http://msdn.microsoft.com/xml/general/wsdl.asp2200

[XACML] TBS2201

[XTASS] P. Hallam-Baker, XML Trust Axiom Service Specification 1.0, VeriSign Inc. January2202
2001. http://www.xmltrustcenter.org/2203

[XML-SIG] D. Eastlake, J. R., D. Solo, M. Bartel, J. Boyer , B. Fox , E. Simon. XML-Signature2204
Syntax and Processing, World Wide Web Consortium. http://www.w3.org/TR/xmldsig-2205
core/2206

[XML-SIG-XSD]XML Signature Schema available from http://www.w3.org/TR/2000/CR-xmldsig-core-2207
20001031/xmldsig-core-schema.xsd.2208

[XML-Enc] XML Encryption Specification, In development.2209

[XML-Schema1] H. S. Thompson, D. Beech, M. Maloney, N. Mendelsohn. XML Schema Part 1:2210
Structures, W3C Working Draft 22 September 2000, http://www.w3.org/TR/2000/WD-2211
xmlschema-1-20000922/, latest draft at http://www.w3.org/TR/xmlschema-1/2212

[XML-Schema2] P. V. Biron, A. Malhotra, XML Schema Part 2: Datatypes; W3C Working Draft 222213
September 2000, http://www.w3.org/TR/2000/WD-xmlschema-2-20000922/, latest draft2214
at http://www.w3.org/TR/xmlschema-2/2215

2216
http://www.itl.nist.gov/div897/ctg/conformProject.shtml2217

2218
http://lists.oasis-open.org/archives/conformance/200104/msg00000.html2219

2220
XML Protocol specification conformance issues2221

