

User Interface Markup Language (UIML)
Draft Specification

Document Version 17 January 2000

Language Version 2.0a

Editor (uiml-editor@uiml.org):

Constantinos Phanouriou
Universal Interface Technologies, Inc., phanouriou@universalit.com

 © Copyright Universal Interface Technologies, Inc., 2000

Contents
Disclaimer: This document is subject to change without notice.

UIML 2.0a Language Reference

UIT, Inc. Page 2 1/17/2000

1 Introduction to UIML 2.0a... 4

1.1 Relationship of UIML to XML, XSL, and CSS...4

1.2 Purpose of this Document ...4

1.3 Terminology ...5

2 Document Status .. 7

2.1 Editor ..7

2.2 Copyright Notice ..7

2.3 UIML License Cost..7

2.4 Errata..7

2.5 Comments...8

3 Structure of a UIML Document ... 9

3.1 Overview...9
3.1.1 Interface Behavior... 9
3.1.2 Philosophy Behind UIML’s Tags.. 9
3.1.3 First UIML Example: Hello World .. 10

3.2 UIML Document Structure...11

3.3 Second UIML Example ...12

3.4 UIML Namespace ..16

3.5 UIML Mime Type..16

4 Table of UIML Elements... 17

5 The uiml and head elements.. 19

5.1 The uiml Element ...19

5.2 The head Element...19
5.2.1 The meta Element ... 20

6 Interface Description ... 21

6.1 Overview...21

6.2 Attributes Common to Multiple Elements...21
6.2.1 The name and class Attributes .. 21
6.2.2 The source Attribute ... 22

6.3 The interface Element..22

6.4 The structure Element..23
6.4.1 The part Element... 24

6.5 The style Element ...25
6.5.1 The property Element ... 26
6.5.2 Using Properties to Achieve Platform Independence.. 28

6.6 The content Element ..31
6.6.1 The constant Element.. 33
6.6.2 The reference Element .. 33

UIML 2.0a Language Reference

UIT, Inc. Page 3 1/17/2000

6.7 The behavior Element ..34
6.7.1 The rule Element... 37
6.7.2 The condition Element ..37
6.7.3 The equal Element .. 37
6.7.4 The event Element... 38
6.7.5 The action Element ... 38
6.7.6 The call Element ... 39
6.7.7 The param Element... 39

7 Peer Components ... 40

7.1 The peers Element..41

7.2 The presentation Element ..41

7.3 The logic Element...43

7.4 Common Elements...44
7.4.1 The component Element.. 44
7.4.2 The attribute Element ... 45
7.4.3 The method Element ... 45
7.4.4 The param Element... 47
7.4.5 The returns Element.. 47
7.4.6 The script Element .. 47

8 Reusable Interface Components... 48

8.1 The template Element...48

8.2 Rules for Templates ...49
8.2.1 Combine Using Replace.. 51
8.2.2 Combine Using Append.. 52
8.2.3 Combine Using Cascade ... 52

8.3 Multiple Inclusions...53

8.4 The export Attribute ..53

9 Alternative Organizations of a UIML document.. 55

9.1 Normal XML Mechanism ...55

9.2 UIML Template Mechanism...55

References .. 57

References .. 57

Appendix A. UIML 2.0a Document Type Definition.. 58

Appendix B. Behavior Rule Selection Algorithm ... 64

UIML 2.0a Language Reference

UIT, Inc. Page 4 1/17/2000

1 Introduction to UIML 2.0a
The User Interface Markup Language (UIML) is the result of starting with a clean sheet of paper
and creating language for describing user interfaces in a highly device-independent manner. By
“device” we mean PCs, various information appliances (e.g., handheld computers, desktop
phones, cellular or PCS phones), or any other machine that a human can interact with. UIML 2
is a declarative, XML-compliant language that originated with the UIML 1.0 specification,
created in 1997 [5].

To create a user interface (UI), one writes a UIML document, which includes presentation style
appropriate for devices on which the UI will be deployed. UIML is then automatically mapped
to a language used by the target device, such as HTML, WML, VoiceXML, C++ (with an API
such as MFC), Java (with an API such as Swing), and so on.

Among the goals of UIML are the following:

• allow individuals to implement UIs for any device without learning languages and APIs
specific to the device,

• reduce the time to develop UIs for a family of devices,

• provide a natural separation between UI code and application logic code,

• allow non-programmers to implement UIs,

• permit rapid prototyping of UIs,

• simplify internationalization and localization,

• allow efficient download of UIs over networks to client machines,

• facilitate enforcement of security, and

• allow extension to support UI technologies that are invented in the future.

For further discussion of the motivation for and uses of UIML, please see Abrams et al [4].

1.1 Relationship of UIML to XML, XSL, and CSS
UIML is compliant with the W3C XML 1.0 specification [1]. Appendix A contains the UIML
2.0a DTD.

When UIML is compiled to HTML, CSS style sheets or XSL formatting objects [6] can be used
with the resultant HTML. In addition, XSLT [7] can be used to transform UIML to other XML-
compliant markup languages.

1.2 Purpose of this Document
This document serves as the official language reference for UIML 2.0a. It describes the syntax of
the elements and their attributes, the structure of UIML documents, and usage examples. It also

UIML 2.0a Language Reference

UIT, Inc. Page 5 1/17/2000

gives pointers to other reference documentation that may be helpful when developing
applications using UIML.

UIML is intended to be an open, standardized language, which may be freely implemented
without any licensing costs. The goal of this document is to elicit feedback from the wider
community. Comments are encouraged; please send them to uiml-editor@uiml.org or participate
in discussion on the listserv uiml-language@uiml.org. A submission to a standards organization
will occur after comments are received and this draft specification is finalized.

This document may be distributed freely, as long as all text and legal notices remain intact.

1.3 Terminology
Certain terminology used in the specification is made precise through the definitions below.

Application: When we speak of building a UI, the UI along with the underlying logic that
implements the functionality visible through the interface is called the application.

End user: The person that uses the application's UI.

Application Logic: Code that is part of the application but not part of the UI.

Device: A device is a physical object with which an end user interacts using a UI, such as a PC, a
handheld or palm computer, a cell phone, an ordinary desktop voice telephone, or a pager.

UI Toolkit: A toolkit is the markup language or software library upon which an application’s UI
runs. Note that we use the word “toolkit” in a more general sense than its traditional use. We
use I to mean both markup languages that are capable of representing UIs (e.g., Wireless Markup
Language [WML], HTML, and VoiceXML) as well as APIs for imperative programming
languages (e.g., Java AWT, Java Swing, Microsoft Foundation Classes).

Platform: A platform is a combination of a device, operating system (OS), and a UI toolkit. An
example of a platform is a PC running Windows NT on which applications use the Java Swing
toolkit. Another example is a cellular phone running a manufacturer-specific OS and a WML [9]
renderer.

Rendering: Rendering is the process of converting a UIML document into a form that can be
displayed (e.g., through sight or sound) to an end user, and with which an end user can interact.
Rendering can be accomplished in two ways:

1. By compiling UIML into another language (e.g., WML, Java), which allows display and
interaction of the UI described in UIML. Compilation might be accomplished by XSL
[6], or by a program written in a traditional programming language.

2. By interpreting UIML, meaning that a program reads UIML and makes calls to an API
which displays the UI and allows interaction. Interpretation is the same process that a
Web browser uses when presented with an HTML document.

Rendering engine: Software that performs the actual process or rendering a UIML document.

UIML 2.0a Language Reference

UIT, Inc. Page 6 1/17/2000

UI Widget: UIML describes how to combine UI widgets. The UI toolkit with which the UI is
implemented provides primitive building blocks, which we call widgets. The term “widget” is
traditionally used in conjunction with a graphical UI. However we use it in a more general
sense, to mean presentation elements of any UI paradigm.

For example, a widget might be a component in the Microsoft Foundation Classes or Java Swing
toolkits, or a card or a text field in a WML document. In some toolkits, a widget name is a class
name (e.g., the java.awt.Button class in the Java AWT toolkit, or the CWindow class in
Microsoft Foundation Classes). If the toolkit is a markup language (e.g., WML, HTML,
VoiceXML) then a widget name may be a tag name (e.g., “CARD” or “TEXT” for WML). The
definition of names is outside the scope of this specification, as explained in Section 3.1.

Runtime: This is the period of time during which the UI is displayed (e.g., through sight or
sound) to an end user, and the end user can interact with the UI.

Other terms: The following are terms and conventions used throughout this specification.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY" and "OPTIONAL" in this
document are to be interpreted as described in RFC2119 [8].

Ellipses (...) indicate where attribute values or content have been omitted. Many of the
examples given below are UIML fragments and additional code maybe needed to render them.

URLs given inside the code segments in this document are for demonstration only and may not
actually exist.

UIML 2.0a Language Reference

UIT, Inc. Page 7 1/17/2000

2 Document Status
Versions of this document available online are listed below:

��Latest version of UIML2 spec: http://www.uiml.org/docs/uiml20

��This version of the document:

��HTML: http://www.uiml.org/docs/uiml20a-17Jan00.html
��PDF: http://www.uiml.org/docs/uiml20a-17Jan00.pdf

• Previous version:
��HTML: http://www.uiml.org/docs/uiml20-990801.html
��PDF: http://www.uiml.org/docs/uiml20-990801.pdf

2.1 Editor
Constantinos Phanouriou, Universal Interface Technologies, Inc., PO Box 20746, Roanoke, VA
24018, uiml-editor@uiml.org.

2.2 Copyright Notice
© Copyright Universal Interface Technologies, Inc., 2000. All rights reserved.

Permission to use, copy, and distribute the contents of this document, but not to excerpt it,
modify it, or create derivative works, in any medium for any purpose and without fee or royalty
is hereby granted, provided that you include the following on ALL copies of the document, or
portions thereof, that you use:

1. A link to or statement of the URL www.uiml.org/docs/uiml2.

2. The pre-existing copyright notice of the original author. If no such notice exists, a notice
of the form: "© Copyright Universal Interface technologies, Inc., 1999-2000. All rights
reserved."

COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE.

2.3 UIML License Cost
UIML 2.0a may be freely implemented without any license cost.

2.4 Errata
The list of known errors in this specification is available at the following location:

http://www.uiml.org/docs/uiml20a-errata.html

UIML 2.0a Language Reference

UIT, Inc. Page 8 1/17/2000

Please report errors in this document to uiml-editor@uiml.org.

2.5 Comments
Comments regarding this document can be submitted uiml-editor@uiml.org.

UIML 2.0a Language Reference

UIT, Inc. Page 9 1/17/2000

3 Structure of a UIML Document

3.1 Overview
In UIML version 2.0a, a UI is a set of interface elements with which the end user interacts. Each
interface element is called a part; just as an automobile or a computer is composed of a variety of
parts, so is a UI. The parts may be organized differently for different categories of end users and
different families of devices. Each interface part has content (e.g., text, sounds, images) used to
communicate information to the end user. Interface parts can also receive information from the
end user using interface artifacts (e.g., a scrollable selection list) from the underlying device.
Since the artifacts vary from device to device, the actual mapping (rendering) between an
interface part and the associated artifact (widget) is done using a style element.

3.1.1 Interface Behavior

UIML describes in a behavior element what actions are to occur as an end user interacts with a
UI. The behavior element is based on rule-based languages. Each rule contains a condition and
a sequence of actions. Whenever a condition is true, the associated actions are executed.

Whenever an end user interacts with a UI, the UI generates events. In this version of the UIML
specification, each condition can occur only when an event occurs. This simplifies the rendering
of UIML by compilation to other languages.

There are three types of actions: (1) a property of some part in the UI changes, (2) a function in
a scripting language is invoked, or (3) a function or method in the application logic is invoked.
In cases (2) and (3), UIML gives a syntax for describing the calling convention, but does not
specify an implementation of how the call is performed (e.g., RPC, RMI, CORBA).

Finally, a UIML document provides sufficient information to create an implementation in which
the application logic modifies the UI programmatically.

3.1.2 Philosophy Behind UIML’s Tags

UIML can be viewed as a meta-language or an extensible language, analogous to XML. XML
does not contain tags specific to a particular purpose (e.g., HTML’s <H1> or). Instead,
XML is combined with a document type definition (DTD) to specify what tags are legal in a
particular markup language that is XML-compliant. The advantage is that an extensible
language can be standardized once, rather than requiring periodic standardization committee
meetings to add new tags as the applications evolve.

Analogously, UIML does not contain tags specific to a particular UI toolkit (e.g., <WINDOW>
or <MENU>). UIML captures the elements that are common to any UI through 28 generic
elements. UIML syntax also defines language elements that map these elements to a particular
toolkit. However, the vocabulary of particular toolkits (e.g., a window or a card) is not part of
UIML, because the vocabulary appears as the value of attributes in UIML. Thus UIML only

UIML 2.0a Language Reference

UIT, Inc. Page 10 1/17/2000

needs to be standardized once, and different constituencies of end users can define vocabularies
that are suitable for various toolkits independently of UIML.

Thus a UIML author needs more than this document, which specifies the UIML language. You
also need one document for each UI toolkit (e.g., Java Swing, Microsoft Foundation Classes,
WML) to which you wish to map UIML. The toolkit-specific document enumerates for a
particular toolkit a vocabulary of toolkit components (to which each part element in a UIML
document is mapped) and their property names.

3.1.3 First UIML Example: Hello World

Here is the famous “Hello World” example in UIML. It simply generates a UI that contains the
words "Hello World!".

<?xml version="1.0"?>
<!DOCTYPE uiml PUBLIC "-//UIT//DTD UIML 2.0a Draft//EN"
 "http://uiml.org/dtds/UIML2_0a.dtd">

<uiml>
 <interface>
 <structure>
 <part name="TopHello">
 <part name="hello" class="helloC"/>
 </part>
 </structure>
 <style>
 <property

 part-name="TopHello" name="rendering">Container</property>
 <property

 part-name="TopHello" name="content">Hello</property>
 <property

 part-class="helloC" name="rendering">String</property>
 <property

 part-name="hello" name="content">Hello World!</property>
 </style>
 </interface>
 <peers> ... </peers>
</uiml>

To complete this example, we must provide something for the <peers>…</peers> element.
A VoiceXML [10] renderer given the above UIML code and the following peer element

<peers>

 <presentation name="VoiceXML">
 <component name="Container" maps-to="vxml:form"/>
 <component name="String" maps-to="vxml:block">
 <attribute name="content" maps-to="PCDATA"/>
 </component>
 </presentation>
</peers>

would output the following VoiceXML code:

UIML 2.0a Language Reference

UIT, Inc. Page 11 1/17/2000

<?xml version="1.0"?>
<vxml>
 <form>
 <block>Hello World!</block>
 </form>
</vxml>

A WML [9] renderer given the above UIML code and the following peer element

<peers>
 <presentation name="WML">
 <component name="Container" maps-to="wml:card">
 <attribute name="content" maps-to="wml:card.title"/>
 </component>
 <component name="String" maps-to="wml:p">
 <attribute name="content" maps-to="PCDATA"/>
 </component>
 </presentation>
</peers>

would output the following WML code:

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.0//EN"
 "http://www.wapforum.org/DTD/wml.xml">

<wml>
 <card title="Hello">
 <p>Hello World!</p>
 </card>
</wml>

3.2 UIML Document Structure
A typical UIML 2.0a document is composed of these two parts:

1. A prolog identifying the XML language version and encoding and the location of the

UIML2.0a document type definition (DTD):

<?xml version="1.0"?>
<!DOCTYPE uiml PUBLIC
 "-//UIT//DTD UIML 2.0a Draft//EN" http://uiml.org/dtds/UIML2_0a.dtd">

Note: This prolog should begin every UIML document, but for ease of readability some of the
examples given in this document omit it.

2. The root element in the document, which is the uiml tag:

<uiml xmlns='http://uiml.org/dtds/UIML2_0a.dtd'> ... </uiml>

UIML 2.0a Language Reference

UIT, Inc. Page 12 1/17/2000

See Section 5.1 for more information on the root element uiml. The uiml element contains
four child elements:

a) An optional header element giving metadata about the document:

<head> ... </head>

The head element is discussed in Section 5.2.

b) An optional UI description, which describes the parts comprising the UI, and their
structure, content, style, and behavior:

<interface> ... </interface>

Section 6.3 discusses the interface element.

c) An optional element that describes the mapping from each property and event name used
elsewhere in the UIML document to a UI toolkit and to the application logic:

<peers> ... </peers>

Discussion of the peers element is deferred until Section 7.1, because the peers element
normally just names an external file.

d) An optional element that allows reuse of fragments of UIML:

<template> ... </template>

Section 8.1 discusses the template element, and its use in building libraries of reusable UI
components.

White space (spaces, new lines, tabs, and XML comments) may appear before or after each of
the above tags (provided that the XML formatting rules are not violated).

To summarize, here is a skeleton of a UIML document:

<?xml version="1.0"?>
<!DOCTYPE uiml PUBLIC
 "-//UIT//DTD UIML 2.0a Draft//EN" "http://www.uiml.org/dtds/UIML2_0a.dtd">

<uiml xmlns='http://uiml.org/dtds/UIML2_0a.dtd'>
 <head> ... </head>
 <interface> ... </interface>
 <peers> ... </peers>
 <template> ... </template>
</uiml>

The four elements head, interface, peers, and template may appear in any order.

3.3 Second UIML Example
This section contains a simple example of a UIML document. For further examples, please see
[2].

UIML 2.0a Language Reference

UIT, Inc. Page 13 1/17/2000

The example below displays a single window representing a dictionary. The dictionary contains
of a list box in which an end user can click on a term (i.e., dog, cat, mouse). The dictionary also
contains a text area in which the definition of the currently selected term is displayed. The style
sheet maps the interface to the Java AWT toolkit.

Boxes are overlaid on the UIML document to make reading easier by identifying major
elements.

UIML 2.0a Language Reference

UIT, Inc. Page 14 1/17/2000

<?xml version="1.0"?>
<!DOCTYPE uiml PUBLIC
 "-//UIT//DTD UIML 2.0a Draft//EN"
 "http://uiml.org/dtds/UIML2_0a.dtd">

<!-- This is Dictionary.ui.
 Displays one window on the screen containing a list of animals
 and a textbox. Clicking an animal's name displays a definition in the
 textbox. -->

<uiml>

 <peers>
 <presentation name="java"
 source="http://uiml.org/toolkits/Java20AWT.ui"
 how="replace"/>
 </peers>

 <interface>

 <structure>
 <part class="Frame" name="ListBoxes">
 <part class="Label" name="IntroLabel"/>
 <part class="List" name="Terms"/>
 <part class="Label" name="DefnLabel"/>
 <part class="TextArea" name="Defn"/>
 </part>
 </structure>

 <style source="http://uiml.org/ui/JavaAWTRenderings.ui#AWT"
 how="cascade">
 <property part-class="Frame" name="layout" >gridBagLayout</property>
 <property part-class="Frame" name="xplace" >relative</property>
 <property part-class="Frame" name="yplace" >relative</property>
 <property part-class="Frame" name="background" >blue</property>
 <property part-class="Frame" name="font-style" >bold</property>
 <property part-class="Frame" name="location" >100,100</property>
 <property part-class="Frame" name="size" >500,300</property>

 <property part-class="Label" name="font-size" >20</property>
 <property part-class="Label" name="foreground" >white</property>
 <property part-class="Label" name="font-style" >boldItalic</property>

 <property part-class="List" name="background" >gray</property>

 <property part-class="TextArea" name="background" >gray</property>

 <property part-name="ListBoxes" name="content" >Simple Dictionary</property>
 <property part-name="IntroLabel" name="content" >Pick a term:</property>
 <property part-name="Terms" name="content">
 <constant name="Cat" >Cat</constant>
 <constant name="Dog" >Dog</constant>
 <constant name="Mouse">Mouse</constant>
 </property>
 <property part-name="DefnLabel" name="content">Defn:</property>
 <property part-name="Defn" name="content">Please select a term...</property>

 <property part-name="Terms" name="xplace" >0</property>
 <property part-name="Terms" name="alignment" >north</property>
 <property part-name="Terms" name="fill" >both</property>

UIML 2.0a Language Reference

UIT, Inc. Page 15 1/17/2000

 <property part-name="DefnLabel" name="alignment" >center</property>
 <property part-name="DefnLabel" name="xplace" >1</property>
 <property part-name="DefnLabel" name="yplace" >0</property>

 <property part-name="Defn" name="xplace" >1</property>
 <property part-name="Defn" name="columns" >20</property>
 <property part-name="Defn" name="rows" >4</property>
 <property part-name="Defn" name="scrollbars">vertical-only</property>
 <property part-name="Defn" name="editable" >false</property>

 <property event-class=”LSelected” name=”rendering” >ItemEvent</property>
 </style>

 <behavior>

 <rule>
 <condition>
 <equal>
 <event part-name="Terms" class="LSelected" name="item-selected"/>
 <reference constant-name="Cat"/>
 </equal>
 </condition>
 <action>
 <property part-name="Defn" name="content"
 >Carnivourous, domesticated mammal that's fond of rats and mice</property>
 </action>
 </rule>

 <rule>
 <condition>
 <equal>
 <event part-name="Terms" class="LSelected" name="item-selected"/>
 <reference constant-name="Dog"/>
 </equal>
 </condition>
 <action>
 <property part-name="Defn" name="content"
 >Domestic animal related to a wolf that's fond of chasing cats</property>
 </action>
 </rule>

 <rule>
 <condition>
 <equal>
 <event part-name="Terms" class="LSelected" name="item-selected"/>
 <reference constant-name="Mouse"/>
 </equal>
 </condition>
 <action>
 <property part-name="Defn" name="content"
 >Small rodent often seen running away from a cat</property>
 </action>
 </rule>

 </behavior>

 </interface>

</uiml>

UIML 2.0a Language Reference

UIT, Inc. Page 16 1/17/2000

3.4 UIML Namespace
UIML is design to work with existing standards. This includes other markup languages that
specify platform-dependent formatting (i.e., HTML for text, JSGF for voice, etc.). XML
Namespaces remove the problem of recognition and collisions between elements and attributes
of two or more markup vocabularies in the same file. All UIML elements and attributes are
inside the “uiml” namespace, identified by the URI “http://uiml.org/dtds/UIML2_0a.dtd”.

Example
Here is an example that combines UIML and HTML vocabularies:

<uiml:uiml xmlns:uiml='http://uiml.org/dtds/UIML2_0a.dtd'>
 <uiml:interface>
 <uiml:structure>
 <uiml:part uiml:name="A"/>
 </uiml:structure>

 <uiml:style>
 <uiml:property uiml:name="content" uiml:part-name="A">
 <html:em xmlns:html='http://www.w3.org/TR/REC-html40'
 >Emphasis</html:em>
 </uiml:property>
 </uiml:style>
 </uiml:interface>
</uiml:uiml>

The above code can be simplified by making uiml the default namespace as follow:

<uiml xmlns='http://uiml.org/dtds/UIML2_0a.dtd'>
 <interface>
 <structure>
 <part name="A"/>
 </structure>

 <style>
 <property name="content" part-name="A">
 <html:em xmlns:html='http://www.w3.org/TR/REC-html40'
 >Emphasis</html:em>
 </property>
 </style>
 </interface>
</uiml>

3.5 UIML Mime Type
The following mime type should be used for UIML documents:

text/uiml

UIML 2.0a Language Reference

UIT, Inc. Page 17 1/17/2000

4 Table of UIML Elements
The table below is both an overview of all elements in UIML, and an index to where they are
discussed in the remainder of this document. The UIML 2.0a DTD is given in Appendix A.

Element Purpose Page
<action> Perform an action if the condition of a rule is true 38
<attribute> A toolkit property 45
<behavior> Specify rules for runtime behavior 34
<call> Call a function or method external to UIML document 39
<component> Specify a presentation or application logic peer 44
<condition> Specify a condition for a rule 37
<constant> Define a constant value 32
<content> Specify a set of constant values 31
<equal> Compares the value of an event with another value 37
<event> Specify a runtime UI event 38
<head> A container for metadata information 19
<interface> A container for the interface description 22
<logic> A container for computation components 43
<meta> Define a piece of metadata as a name/value pair 20
<method> An executable method 45
<param> A parameter to a method 39
<part> Specify a single interface part 24
<peers> Describes mapping from property and event names to a UI

toolkit and the application logic
41

<presentation> A container for presentation components 41
<property> Specify an interface property 26
<reference> Reference a constant 33
<returns> The return value of a method 47
<rule> A condition/action pair 37
<script> A container for executable script code 47
<structure> Specify an interface physical structure 23
<style> Specify a set of style properties for the interface 25
<template> A container for reusing UIML elements 48
<uiml> Top-level element in each UIML document 19

The elements of the UIML 2.0a DTD are represented below in the form of a diagram. Elements
shown in bold are legal children of the template element.

UIML 2.0a Language Reference

UIT, Inc. Page 18 1/17/2000

uiml�

template�

interface �

peers �

head�

meta�

presentation � logic �

component �

method� attribute�

param� returns�

script �

style � behavior �content �structure �

part � property � constant � rule �

condition� action�

event�equal�

reference�

task�

elements
in bold

UIML 2.0a Language Reference

UIT, Inc. Page 19 1/17/2000

5 The uiml and head elements
Whenever a new element is introduced in the remainder of the document, we first give the
appropriate DTD fragment.

5.1 The uiml Element

DTD

<!ELEMENT uiml (head?, peers?, interface?, template*)>

Description
The uiml element is the root element in a UIML document. All other elements are contained in
the uiml element. The uiml element appears as follow:

<uiml>...</uiml>

Usually, one uiml element equates to one file, in much the same way that there is one HTML
element per file when developing HTML-based applications. However, other arrangements are
possible. For example, the uiml element might be retrieved from a database or the elements
contained within the uiml element might be stored in multiple files.

When multiple markup vocabularies are used within the same UIML file, then the uiml
namespace must be specified as follow:

<uiml xmlns='http://uiml.org/dtds/UIML2_0a.dtd'>...</uiml>

5.2 The head Element

DTD

<!ELEMENT head (meta)*>

Description
The head element contains metadata about the current UIML document. Elements in the head
element are not considered part of the interface, and have no effect on the rendering or operation
of the UI.

UIML authoring tools should use the head element to store information about the document
(e.g., author, date, version, etc…) and other proprietary information.

UIML 2.0a Language Reference

UIT, Inc. Page 20 1/17/2000

5.2.1 The meta Element

DTD

<!ELEMENT meta EMPTY>
<!ELEMENT meta EMPTY>
<!ATTLIST meta
 name NMTOKEN #REQUIRED
 content CDATA #REQUIRED>

Description
The meta element has the same semantics as the meta element in HTML. It describes a single
piece of metadata about the current UIML document. This may includes author information,
date of creation, etc.

The name attribute specifies the meta-information and the content attribute its content.

Example

<head>
 <meta name="Author" content="UIML Editor"/>
 <meta name="Date" content="November 1, 2001"/>
 <meta name="Description" content=
 "This is an example of how to use the meta tag in UIML.
 The content of the meta tag can include white space."/>
</head>

UIML 2.0a Language Reference

UIT, Inc. Page 21 1/17/2000

6 Interface Description
This section describes the elements that go inside the interface element, their attributes, and their
syntax. Examples are provided to help show common usage of each element.

6.1 Overview
The interface element contains four elements: structure, style, content, and behavior:

<interface>
 <structure> </structure>
 <style> </style>
 <content> </content>
 <behavior> </behavior>
</interface>

The structure element enumerates a set of interface parts and their organization for various
platforms.

The style element defines the values of various properties associated with interface parts
(analogous to style sheets for HTML).

The content element gives the words, sounds, and images associated with interface parts to
facilitate internationalization or customization of UIs to various user groups (e.g., by job role).

The behavior element defines what UI events should be acted on and what should be done.

6.2 Attributes Common to Multiple Elements
Before explaining each of the elements introduced in Section 3, we first describe some attributes
that are used in several of the elements.

6.2.1 The name and class Attributes
The part, event, and call elements in UIML may have a name and a class attribute.

The name attribute assigns a unique identifier to that element. No two elements of the same type
(e.g., no two part elements) can have the same name. However, elements of two different types
may have the same name.

The class attribute assigns a class name to an element. Any number of elements may be assigned
the same class name.

The use of the attribute class is based on the CSS [3] concept of class: a “class” specifies an
object type, while the element’s “name” uniquely identifies an instance of that type. A style
associated with all instances of a class is associated with all elements that specify the same value
for their class attribute; a style associated with a specific instance of a class is associated with
any elements that specify the same value for their name attribute.

UIML 2.0a Language Reference

UIT, Inc. Page 22 1/17/2000

6.2.2 The source Attribute

Certain UIML elements (behavior, component, constant, content, interface, logic, part, peers,
presentation, property, rule, script, structure, and style) may contain an source attribute. Like
HTML, the source attribute specifies a link from the UIML document to a Web resource named
by a URI. However, the reason for using a link in UIML differs from HTML.

An source attribute can refer to two things:

��A URI that does not contain UIML code. In this case, the file can be textual (e.g. HTML) or

binary (e.g., JPEG). This case is analogous to the IMG tag in HTML; the URI specifies

<constant name="Logo" source="http://uiml.org/icons/UIML_Logo.jpg"/>

• A URI that does contain UIML code. The UIML code is inserted into the element that

contains the source, as explained in Section 8.2. Inserting code has several uses, explained in
section 8:

o Splitting a UI definition into several UIML documents
o Creating a library of reusable UI components
o Achieving the cascading behavior of CSS style sheets

The URI may either be an element in the same document as the source appears, or in a
different document:

��URI names the same document. The two elements must either have the same tag or
the URI must name a template element.

<style name="Simple"> ... </style>
<style name="Complex" source="#Simple" how="cascade"> ...
</style>

��URI names another document. Again, the two elements must either have the same tag
or the URI must name a template element.

<part name="Dialog"
 source="http://uiml.org/templates/Dialog.uiml#SimpleDialog"
 how="replace"
/>

A how attribute of cascade achieves behavior similar to cascading in CSS, while
replace allows a UIML document to be split into multiple files.

6.3 The interface Element

DTD

UIML 2.0a Language Reference

UIT, Inc. Page 23 1/17/2000

<!ELEMENT interface (structure|style|content|behavior)*>
<!ATTLIST interface
 %SourceAttributes;>

Description
All UIML elements that describe the interface are contained in the interface element. The
interface element describes a UI, not the interaction of the UI and the application logic. The
logic element is used to describe the UI/application logic interaction – see Section 7.3. A UIML
interface may be as simple as a single string, or as complex as hundreds of interface elements
that employ various interface technologies (e.g., voice, graphics, and 3D).

An interface is composed of four elements: structure (see Section 6.4), style (see Section 6.5),
content (see Section 6.6), and behavior (see Section 6.7).

6.4 The structure Element

DTD

<!ELEMENT structure (part*)>
<!ATTLIST structure
 %SourceAttributes;>

Description
An application program can have a UI with one or more organizations associated with it. By
“organization,” we mean the set of UI widgets that are present in the interface, and the
relationship of those widgets to each other when the interface is rendered. The relationship
might be spatial (e.g., in a graphical UI) or temporal (e.g., in a voice interface).

For example, there may be one interface organization for a desktop PC, and another organization
for a voice interface. The two interfaces may be radically different in terms of which UI widgets
are present. For example the voice interface may have fewer widgets, allowing an end user to
select only a subset of the operations available in the PC interface. In addition, the two
interfaces may be organized differently. The voice interface might be a hierarchy of menus,
implementing the paradigm of a voice activated response system. Meanwhile the PC interface
might be in the form of a wizard and consist of a sequence of dialog boxes. Thus, a UIML
document needs to enumerate which interface parts are present in each version of the interface,
and how those parts are organized (e.g., hierarchically). This is the purpose of the structure
element. Just as a bridge over a river is a structure that consists of many parts (e.g., steel beam,
bolts), a UI consists of a structure (its organization) and many parts (e.g., widgets).

All interface descriptions must include at least one structure description.

There may be more than one structure element, each representing a different organization of the
interface. (Thus in the PC and voice interface example above, there are two structure elements.)
Each structure element is given a unique name.

UIML 2.0a Language Reference

UIT, Inc. Page 24 1/17/2000

If a UIML document contains more than one structure element, then a UIML renderer must
select by name exactly one structure element and ignore all other structure elements. The name
of the selected element is supplied by a mechanism outside the scope of this specification. The
structure element whose name matches the supplied name is then used, and all other structure
elements are ignored. If the supplied name does not match the name attribute of any structure,
then the interface cannot be rendered.

Example

<structure name="default">
 <part class="c1" name="n1"/>
 <part class="c2" name="n2"/>
</structure>

<structure name="ComplexUI">
 <part class="c2" name="n3">
 <part class="c1" name="n2"/>
 </part>
</structure

<structure name="SimpleUI">
 <part class="c1" name="n1"/>
</structure>

6.4.1 The part Element

DTD

<!ELEMENT part (style?, content?, behavior?, part*)>
<!ATTLIST part
 %SourceAttributes;
 class NMTOKEN #IMPLIED>

Description
Each part element corresponds either to one UI widget or to nothing (null). (It is sometimes
useful to associate a part with nothing; for example a part might be needed for a large screen UI,
but is omitted from a small device screen. In the former case, the part corresponds to a UI
widget, and in the later case the part corresponds to nothing.)

Parts may be nested to represent a hierarchical relationship of parts. Let a and b denote two part
elements. If part b is nested inside part a, and both a and b correspond to UI widgets (i.e.,
neither a nor b correspond to null), then b's UI widget must be "contained in" a's widget, where
"contained in" is defined in terms of the UI toolkit. If the UI toolkit does not define nesting, then
nesting part b in part a in a UIML document is equivalent to a UIML document in which the
parts are not nested.

For example, the Java Swing toolkit has a notion of containers and components. Containers
contain other containers or components, forming a hierarchy. Or, in a voice-based language, the
oral equivalent of menus can be nested, again forming a hierarchy.

UIML 2.0a Language Reference

UIT, Inc. Page 25 1/17/2000

Each part must be associated with a single class. However, if multiple structure elements exist,
then a part can be associated with a different class in each structure (see example in Section 6.4).
When the interface is rendered, only one structure is used (as discussed in “Description” under
Section 6.4); thus, a part is always associated with a unique class.

UIML allows the style, content, and behavior information associated with a particular part to be
specified within the part itself. Usually, this information is specified in the corresponding style,
content, and behavior elements.

6.5 The style Element

DTD

<!ELEMENT style (property*)>
<!ATTLIST style
 %SourceAttributes;>

Description
The style element contains a list of properties and values that are used to render the interface.
Like the CSS and XSL specifications, UIML properties specify attributes of how the interface
will be rendered on various devices, such as fonts, colors, layout, and so on.

For example, the following fragment will make all parts with class=”c1” use the Comic font, and
the single part named “n1” have size 100 by 200:

<style name="Graphical">
 <property part-class="c1" name="font" >Comic</property>
 <property part-name="n1" name="size" >100,200</property>
</style>

However, unlike CSS and XSL, the style sheet is used to achieve device independence. This is
discussed in Section 6.5.2.

There must be at least one style element, and there may be more than one. There is normally one
style element for each toolkit to which the UIML document will be mapped. For a given toolkit,
there may be multiple style elements serving a variety of purposes: to generate different
interface presentations for accessibility, to support a family of similar but not identical devices
(e.g., phones that differ in the number of characters that their displays support), to support
different target audiences (e.g., children versus adults), and so on.

Style sheets may also use the mechanism for cascading described in Section 8.2.

UIML 2.0a Language Reference

UIT, Inc. Page 26 1/17/2000

6.5.1 The property Element

DTD

<!ELEMENT property (#PCDATA|constant|property|reference|call)*>

<!ATTLIST property
 %SourceAttributes;
 part-name NMTOKEN #IMPLIED
 part-class NMTOKEN #IMPLIED
 event-name NMTOKEN #IMPLIED
 event-class NMTOKEN #IMPLIED
 call-name NMTOKEN #IMPLIED
 call-class NMTOKEN #IMPLIED>

Description
A property associates a name and value pair with a part, event (see Section 6.7.4), or call (see
Section 6.7.6). For example, a UI part named "button" might be associated with a property name
"color" and value "blue". The property element provides the syntax to make the association
between the name color and value blue with the part button.

6.5.1.1 Where property names are defined
 Property names are not defined by the UIML specification. This is a powerful concept, because
it permits UIML to be extensible: one can define whatever property names are appropriate for a
particular device. For example, a "color" might be a useful property name for a device with a
screen, while "loudness" might be appropriate for a voice-based device.

Property names instead are defined by the peer element (see Section 7). Normally the person
that creates a UIML document does not define the property names. Instead, someone defines a
set of properties one time, for example for the Java AWT UI toolkit, and the peer element simply
specifies a URI that defines those property names. The compiler or interpreter that renders
UIML should also access this URI to map property names in the UIML document to the desired
UI toolkit.

Thus to use UIML one needs both a copy of this specification and a document defining the
property names used in a particular peer element.

6.5.1.2 Semantics of property element
The semantics of a property element are as follows:
• If the property element is contained in a param or another property element, then the

semantics are to get (return to the element containing the property element) a single
property's value.

• Otherwise the semantics are set a value for a single property of an interface part, event, or
call.

UIML 2.0a Language Reference

UIT, Inc. Page 27 1/17/2000

6.5.1.3 Legal values for property elements
The value for each property element can be one of the following:

��A text string. In this case the property has no children, and its body is set to the character

sequence. If the string contains the ampersand character (&) or the left angle bracket (<),
then they must be escaped using either numeric character references or the strings “&”
and “<” respectively (see [1] for more rules about strings and XML documents). Note that
A UIML parser must preserve white space. A UIML renderer may ignore leading and
trailing spaces when rendering text on certain widgets.

<property part-name="part1" name="font">Helvetica-bold</property>
<property part-name="part1" name="title">Char: &</property>
<property part-name="part1" name="content"
 ><![CDATA[Character &]]></property>

��A reference element. In this case the property is set to the value stored in a constant element

that the reference element is associated with. In the following example, the value of font in
the part with name part1 is set to the value of the constant with name font-name.

<property part-name="part1" name="font">
 <reference constant-name="font-name"/>
</property>
...
<content>
 <constant name="font-name">Helvetica-bold</constant>
</content>

��Another property element. The value of one property can be set to the value of another

property. For example, suppose we want to set the font of part part1 to whatever font part2
currently has. The following UIML achieves this:

<property part-name="part1" name="font">
 <property part-name="part2" name="font"/>
</property>

The nested property element gets the font of part2. The nested property does a get because it is
nested in another property element, as explained in Section 6.5.1.2. That returned value then
becomes the value of the font property in part part1.

��A call element. As explained in Section 6.7.6, a call is an invocation of code, such as calling

a function or method in a script, in the application logic, or external to the application. In
this case the property is set to the return value of the invocation.

<property part-name="part1" name="font">
 <call name="getFont"/>
</property>

The logic element (contained in the peers element of a UIML document) defines the code
to which getFont corresponds and how to invoke that code; see Section 7.3.

UIML 2.0a Language Reference

UIT, Inc. Page 28 1/17/2000

Resolving Conflicting Property Values

Consider the following example:

<structure>
 <part name="n1" class="c1"/>
</structure>

<style>
 <property part-name="n1" name="color">Blue</property>
 <property part-class="c1" name="color">Green</property>
</style>

Both property elements are assigning a value for the color of the same part. However, a property
for a part can have only one value at any given time. To remove any ambiguity, two (or more)
property elements cannot have the same part-name. Also two property elements cannot have the
same part-class. However, two property elements can point to the same part (one with part-
name and another with part-class). When there is a conflict, the property that specifies a part-
name overrides the property that specifies a part-class. The same applies for property elements
that assign values to events and methods.

6.5.2 Using Properties to Achieve Platform Independence
One of the powerful aspects of UIML is the ability to design a UIML document that can be
mapped to multiple platforms. This is achieved by a special property called rendering.

To illustrate the use of rendering, let's look at an example. Suppose we were going to create a
UI specifically for Java AWT. First our UIML document would need to introduce a vocabulary
of UI widgets for Java AWT. This is done by the peers section of the dictionary example in
Section 3.3:

 <peers>
 <presentation name="java"
 source="http://uiml.org/toolkits/Java20AWT.ui" how="replace"/>
 </peers>

The above UIML fragment refers to an external Web resource that defines the vocabulary. That
file can be viewed as a black box by the UIML author. (It actually contains a presentation
element, discussed in Section 7.2.) The Web resource uses all Java AWT class names as UI
widget names: Button, List, and so on. The UIML author can then directly use these names as
class names when defining parts:

<structure>
 <part class="Button" name="submitButton"/>
</structure>

On the other hand, suppose we wanted to design a UIML file that could be mapped either to Java
AWT or to Java Swing. And suppose the Web resource named in the peers element introduced
all the Swing class names as vocabulary to use in the UIML document. Now if we wanted to
map the submitButton either to an AWT Button or to a Swing JButton, then we could not make

UIML 2.0a Language Reference

UIT, Inc. Page 29 1/17/2000

submitButton's class Button. Instead, UIML permits the introduction of a psuedo-name chosen
by the UIML author. Suppose we choose as our class name AWTorSwingButton. Our UIML
fragment above then becomes this:

<structure>
 <part class="AWTorSwingButton" name="submitButton"/>
</structure>

Now comes the key idea. The style section is used to map AWTorSwingButton to either Button
or JButton:

<style name="AWT-specific">
 <property part-class="AWTorSwingButton" name="rendering"
 >Button</property>
</style>

<style name="Swing-specific">
 <property part-class="AWTorSwingButton" name="rendering"
 >JButton</property>
</style>

If the rendering engine is invoked with style name AWT-specific, then the submitButton will map
to an AWT button; otherwise if Swing-specific is used, then the submitButton maps to JButton.

Given this basic example, some variations are possible. First, the style section can specify the
rendering property not only for part-class, but also part-name. In this case, the rendering
specified only applies to the part with the specified part-name.

Second, the rendering property can also be specified for event-class, event-name, call-class, and
call-name. Let's consider event-class. One of the powerful aspects of UIML is the naming of
events. In a conventional language (e.g., Javascript) events have names reflective of the
interface components to which they correspond (e.g., OnClick for a button). However one UIML
document may be mapped to several different platforms. An interface part p might be a button
on platform 1 or a menuitem on platform 2. Therefore the event element for part p specifies a
class attribute that can be set to whatever the UIML author wishes (e.g.,
ButtonOrMenuSelection). The style element in the UIML document then maps the name
ButtonOrMenuSelection to a platform-specific name. In this case there would be style elements
with two different names:

<style name="Platform1">...</style>
<style name="Platform2">...</style>

The style element then maps the generic name (e.g., ButtonOrMenuSelected) to a button
selection in platform 1 and a menu item selection in platform 2 using the rendering property:

<style name="Platform1">
 <property event-class="ButtonOrMenuSelected"
 name="rendering">ButtonSelected</property>
<style>

<style name="Platform2">

UIML 2.0a Language Reference

UIT, Inc. Page 30 1/17/2000

 <property event-class="ButtonOrMenuSelected"
 name="rendering">MenuSelected</property>
<style>

(The values ButtonSelected and MenuSelected are part of the vocabulary of the target platform,
defined in the peers element.)

As a second example, the dictionary example of Section 3.3 contains the following:

<style>
 <property event-class=”LSelected”
 name=”rendering” >ItemEvent</property>
</style>
...
<behavior>
 ...
 <event part-name="Terms" class="LSelected"
 name="item-selected"/>
 ...
</behavior>

The behavior section describes what actions to take in response to various user interface events
(see Section 6.7). The event element refers to an event of class LSelected, named to represent a
list selection of one of the animals in the dictionary list. The style element specifies that all
events with class LSelected are mapped to the Java AWT class ItemEvent. If we were to modify
the code in Section 3.3 to map to another platform, we could then map LSelected to something
else in another toolkit by specifying a different rendering property for event-class LSelected.

Finally, call elements can also be given a rendering attribute. This would allow a call action to
map to different function calls, allowing a single user interface to be used with different
application logic or scripting.

Rules to assign "rendering" property: A UIML renderer must obey the following rules in
assigning each part, event, and call element a rendering property.

• If a property element exists with name rendering and part-class, event-class, or call-
class, use the property element value as the rendering.

• Otherwise, if a property element exists with name rendering and part-name, event-name,
or call-name, use the property element value as the rendering.

• Otherwise, use as the rendering property value the value of the part-class, event-class, or
call-class attribute.

UIML 2.0a Language Reference

UIT, Inc. Page 31 1/17/2000

6.6 The content Element

DTD

<!ELEMENT content (constant*)>
<!ATTLIST content
 %SourceAttributes;>

Description
A part in a UI can be associated with various content, such as words, characters, sounds, images.
UIML permits separation of the content from the structure in a UI. Separation is useful when
different content should be displayed under different circumstances. For example, a UI might
display the content in English or French. Or a UI might use different words for an expert versus
a novice user, or different icons for a color-blind user. UIML can express this.

Normally one would set the content associated with a UI part through the property element:

<structure name="GUI">
 <part class="button" name="affirmativeChoice"/>
</structure>

<style>
 <property part-name="affirmativeChoice" name="label">Yes</property>
</style>

In the UIML fragment above, the button label is hard-wired to the string "Yes". Suppose we
wanted to internationalize the interface. In this case UIML allows the value of a property to be
what a programmer would think of as a variable reference using the reference element:

<style>
 <property part-name="affirmativeChoice" name="label">
 <reference constant-name="affirmativeLabel"/>
 </property>
</style>

The reference element refers to a constant-name, which is defined in the content element in a
UIML document. The important concept is that there may be multiple content elements in a
UIML document, each with a different name. When the interface is rendered, one of the content
element is specified, and the content elements inside are then used to satisfy the reference
elements.

This is illustrated in the following example. The UI contains two parts. The class name “button”
suggests that each part be rendered as a button in a graphical UI. (The style element [Section
6.5] actually determines how the class called “button” is rendered – it may be rendered as radio
buttons or a voice response.) The button labels are references to constant-name
"affirmativeLabel" and "negativeLabel". There are three alternative definitions of these
constant-names, corresponding to three languages: English, German, or slang English. Thus
three content sections are defined, one for each language. Within each content element one or

UIML 2.0a Language Reference

UIT, Inc. Page 32 1/17/2000

more constant elements are used to provide the actual literal string that appears in the UI (e.g.,
“Yes” for English but “OK” for slang English).

When the interface is rendered, a mechanism outside the scope of this specification supplies a
content name (eithr English, German, or EnglishSlang). The content element whose name
matches the supplied name is then used, and all other content elements are ignored. This then
determines whether the value of the label property for the "affirmativeChoice" button is "Yes",
"Ja", or "OK." (If the supplied name does not match the name attribute of any content element,
then the interface cannot be rendered.)

Example

<structure name="GUI">
 <part class="button" name="affirmativeChoice"/>
 <part class="button" name="negativeChoice"/>
</structure>

<style>
 <property part-name="affirmativeChoice" name="label">
 <reference constant-name="affirmativeLabel"/>
 </property>
 <property part-name="nagativeChoice" name="label">
 <reference constant-name="negativeLabel"/>
 </property>
</style>

<content name="English">
 <constant name="affirmativeLabel" >Yes</property>
 <constant name="negativeLabel" >No</property>
</content>

<content name="German">
 <constant name="affirmativeLabel" >Ja</property>
 <constant name="negativeLabel" >Nein</property>
</content>

<content name="EnglishSlang">
 <constant name="affirmativeLabel" >OK</property>
 <constant name="negativeLabel" >No</property>
</content>

The last content element could also be shortened, by using the source attribute, discussed in
Section 8.2, so that EnglishSlang inherited the negativeLabel from English as follows:

<content name=”EnglishSlang” source=”English” how="cascade">
 <property part=”affirmativeChoice” pname=”label”>OK</property>
</content>

UIML 2.0a Language Reference

UIT, Inc. Page 33 1/17/2000

6.6.1 The constant Element

DTD

<!ELEMENT constant (#PCDATA|constant)*>
<!ATTLIST constant
 %SourceAttributes;>

Description
Constant elements contain the actual text strings, sounds, and images associated with UI parts
from the part element. Each constant element is identified by a name attribute and is referenced
by the reference element.

Example
The following example shows how to create constant elements that point to a string, a sound clip,
and an image. Similarly, you can create constants that point to video clips, binary files, and
other objects.

<content>
 <constant name="Name">UIML</constant>
 <constant name="Sound" source="http://uiml.org/uiml.wav"/>
 <constant name="Image" source="http://uiml.org/uiml.jpg"/>
</content>

The constant element can also be used to represent literal strings used inside the condition
element (see Section 6.7.2). For example:

<condition>
 <equal>
 <event part-name="inYear" class="filled" name="content"/>
 <constant>2000</constant>
 </equal>
</condition>

6.6.2 The reference Element

DTD

<!ELEMENT reference EMPTY>
<!ATTLIST reference
 constant-name NMTOKEN #REQUIRED>

Description
The reference element references the value of the constant element specified by the constant-
name attribute.

There are several uses for references:

UIML 2.0a Language Reference

UIT, Inc. Page 34 1/17/2000

��The same text string might be used in two or more places in a UIML document. In this case
a constant element can be defined containing the string and anywhere the string is required
(e.g., as values of a property) the reference element can be used. Thus, if we can modify the
text in the constant element, the change propagates to all the places in the UIML document
that is referenced.

��Often an interface part is initialized to contain several text strings, and when an event later

occurs for the part, an equal element tests to see which text string the end user selected in
triggering the event. (For example, lists and choices in Java AWT contain multiple text
items.) In this case, a constant element can be defined in the content section, and then the
part's values can be initialized in the style section using a property element containing a
reference element as its value. In the behavior element, the rule element handling events for
the part can test whether the item selected corresponded to the constant element by using a
reference element. An example of this appears in Section 3.3.

The semantics of a reference element is to replace the element with the constant element whose
name attribute matches the constant-name attribute of the reference element. If no such element
exists, then the UIML document contains an error.

6.7 The behavior Element

DTD

<!ELEMENT behavior (rule*)>
<!ATTLIST behavior
 %SourceAttributes;>

Description
The behavior of the interface when the end user interacts with it (e.g., what happens when an end
user presses a button) is described by enumerating a set of conditions and associated actions.
This is motivated by rule-based systems. Whenever a condition is true, the associated action is
performed.

• UIML allows two types of conditions. The first is true when an event occurs (e.g., a
button is pressed in the UI). The second is true when an event occurs and the value of
some data associated with the event is equal to a certain value (e.g., a list selection is
made and the selected item is "cat" – the first condition element in the dictionary example
in Section 3.3.

(UIML does not allow other conditions, to avoid implementations that are
computationally expensive [e.g., continuous polling to determine when a condition holds]
or impossible with simple platforms [e.g., WML]).

• Actions can be internal to the UIML document -- specifying a change in a property's

value -- or external -- invoking a method in a script, program, or object.

UIML 2.0a Language Reference

UIT, Inc. Page 35 1/17/2000

A unique aspect of UIML is that events are also described in a device-independent fashion, by
giving each event a name and identifying the class to which it belongs. As we discussed for
parts, the UI implementor uses instance and class names of his/her choice for events, and those
names are mapped to an event in the underlying platform in the style element. For example, the
end user might use the class “selection,” and the style element for a graphical UI maps
“selection” to a “mouse click” event.

In UIML you can specify the following behavior:

��Assign a value to a part’s property. The value can be any of the following: a constant value,

a reference to a constant, the value of property, or the return value of a call.

<behavior>
 <rule>
 <condition>
 <event class="ButtonSelected" part-name="b1">
 </condition>
 <action>
 <property part-name="b1" name="color"/>blue</property>

 <property part-name="b2" name="color"/>
 <reference constant-name="green"/>
 </property>

 <property part-name="b2" name="color"/>
 <property part-name="b1" name="color"/>
 </property>

 <property part-name="b3" name="color"/>
 <call name="getColor"/>
 </property>
 </action>
 </rule>
</behavior>

Actions are executed sequentially thus the property “color” of part “b2” will finally get the value
“blue.” The method “getColor” is an abstract method and can be mapped to either a local script
or external logic method in the style element. Also, the method in this example does not take
any argument (see next case for an example with arguments).

��Call an external function or method. The function or method call (see Section 6.7.6) can

take any number of arguments. Each argument to the call can be any of the following: a
constant value, a reference to a constant, the value of property, or the return value of another
call.

<behavior>
 <rule>
 <condition>
 <event class="ButtonSelected" part-name="b1">
 </condition>
 <action>
 <call name="storeData">

UIML 2.0a Language Reference

UIT, Inc. Page 36 1/17/2000

 <param name="a1">5</param> <!--arg is constant �
 <param name="a2"> <!--arg is reference to constant-->
 <reference constant-name="green"/>
 </param>
 </call>

 <call name="storeColor">
 <param name="a3"> <!--arg is property's value-->
 <property part-name="b1" name="color"/>
 </param>
 </call>

 <call name="DisplayData">
 <param name="a4"> <!--arg is return value -->
 <call name="getColor"/>
 </param>
 <param name="a5">
 <call name="getParam">
 <param name="a6">5</param>
 </call>
 </param>
 </call>
 </action>
 </rule>
</behavior>

��Fire an event. An event can be fired from the action element. The event must be the last

element.

<behavior>
 <rule>
 <condition>
 <event class="ButtonSelected" part-name="b1">
 </condition>
 <action>
 <!--executed when b1 is clicked -->
 <event class="ButtonSelected" part-name="b2"/>
 </action>
 </rule>

 <rule>
 <condition>
 <event class="ButtonSelected" part-name="b2">
 </condition>
 <action>
 <!--executed when b1 or b2 is clicked -->
 <call name="f1"><param name="a1">10</param><call/>
 </action>
 </rule>
</behavior>

Assume that both “b1” and “b2” are rendered as buttons and “ButtonSelected” is mapped to the
event that is fired when a button is pressed. Whenever the end user clicks button “b1” then the
first rule will evaluate to true and fire another event that will simulate the end user pressing “b2”.

UIML 2.0a Language Reference

UIT, Inc. Page 37 1/17/2000

Then the renderer will evaluate the condition for all the rules again, and the second rule will
evaluate to true and call f1(10).

This feature must be used with care, to avoid creating an infinite loop (e.g., if the second action
element was "<event class="ButtonSelected" part-name="b1"/> " to simulate
a click on button b1, instead of the call element). Infinite loops are very difficult to detect ahead
of time, especially when the UIML code is broken into multiple files.

6.7.1 The rule Element

DTD

<!ELEMENT rule (condition,action)?>
<!ATTLIST rule
 %SourceAttributes;>

Description
The rule element defines a binding between a condition element and an action element.
Whenever the condition element within the rule is satisfied, then any elements inside the action
element are executed sequentially (i.e., property assignment, external function or method call, or
event firing). See Section 6.7 for an example and further explanation. Also, it is possible for
multiple rules to be satisfied at any time, see Appendix B for an algorithm on rule selection.

6.7.2 The condition Element

DTD

<!ELEMENT condition (equal|event)>

Description

The condition element contains as a child either an event element or a Boolean expression. The
action element associated with this condition by the parent rule element is executed whenever
either the event named in the event element fires or the Boolean expression evaluates to true.
The only Boolean expression defined in the DTD for UIML 2.0a is the equality operator,
described by the equal element. See Section 6.7 for an example and further explanation.

6.7.3 The equal Element

DTD

<!ELEMENT equal (event,(constant|property|reference))>

Description
The equal element is a Boolean expression with value true or false. Every equal element must
have exactly two children. One must be an event element with a property attribute. The other

UIML 2.0a Language Reference

UIT, Inc. Page 38 1/17/2000

must be a constant, property, or reference element. The semantics of equal are as follows.
Whenever (a) the event named in the event element fires and (b) the value of the element
property named in the event tag equals the result of evaluating the constant, property, or
reference element, then the equal element has value true and the action is executed. Otherwise
the equal element has value false and the action is not executed.

6.7.4 The event Element

DTD

<!ELEMENT event EMPTY>
<!ATTLIST event
 part-name NMTOKEN #IMPLIED
 part-class NMTOKEN #IMPLIED
 name NMTOKEN #IMPLIED
 class NMTOKEN #IMPLIED>

Description
The event element is used in three contexts:

��As the child of a condition element. The parent condition is satisfied whenever the event
occurs.

��As the child of an equal element. The grand-parent condition is satisfied whenever the
event occurs and contains a value that is equal to the value of the sibling element (i.e.,
property, constant, or reference).

��As the child of an action element. The event is fired.

6.7.5 The action Element

DTD

<!ELEMENT action ((property|call)*, event?)>

Description
The action element contains one or more elements that are executed in the order they appear in
the UIML document. Each element can be either a property element to set a property of an
element, a call element, which invokes code (e.g., a function or method), or an event element,
which fires another event. The event element, if present, must be the last element inside the
action. As result of this, you can only fire one event within the action element. See Section 6.7
for an example and further explanation.

UIML 2.0a Language Reference

UIT, Inc. Page 39 1/17/2000

6.7.6 The call Element

DTD

<!ELEMENT call (param*)>
<!ATTLIST call
 name NMTOKEN #IMPLIED
 class NMTOKEN #IMPLIED>

Description
The call element is an abstraction of any type of invocation of code. The code could be a script
defined within the UIML document; otherwise the code is external to the UIML document. For
example, the call might represent invocation of a function or method defined in one of the
following:
• A scripting language, either within the UIML document or outside the UIML document
• The application logic
• A remote procedure
• Anything else that the rendering engine supports as connection between UIML and external

entities, such as databases and directory services.

Each call has a name and class (just like part) and a rendering property (in the style element)
that maps it to a method (in the peers/logic element). This method can be the execution of a local
script, a call to a remote method, or a combination of the two (see Section 7.4.3).

Examples of the call element are shown in Section 6.5.1.3 and at the start of Section 6.7.

6.7.7 The param Element

DTD

<!ELEMENT param (#PCDATA|constant|method|property|reference)?>
<!ATTLIST param
 name NMTOKEN #IMPLIED>

Description
Describes a single parameter of the call described by the parent call element. Note that all
parameters are character strings. It is up to some intermediary to convert parameters from
character strings to other data types (e.g., integer or Boolean) if required.

The order of param elements within the call element is significant if the name attribute is
missing from any element (parameters are matched by position) and not significant if the name
attribute is present in all elements (parameters are matched by name).

UIML 2.0a Language Reference

UIT, Inc. Page 40 1/17/2000

7 Peer Components

UIML can be viewed as a meta- or extensible language, analogous to XML. UIML does not
contain tags specific to a particular UI toolkit (e.g., <WINDOW> or <MENU>). Instead, it uses
a set of generic tags (e.g., <part> , <property>).

As discussed earlier, UIML captures the elements that are common to any UI: an enumeration of
the UI parts, events that occur for those parts, presentation style, content, and interconnection to
application logic. The UIML author specifies instance and class names of their own choice for
interface parts, events, and methods. These names are mnemonics for the interface implementor.
The UIML document specifies a mapping from those names to names that are vocabulary
specific to a particular target platform. For example, if the target is Java AWT, the vocabulary
might consist of the “java.awt.” and “java.awt.event.” class names, such as “Frame,” “Menu,”
and “Button.” If the target is WML, the vocabulary might be tag names, such as “card,” “select,”
and “input.” The vocabulary of target platforms is not a part of UIML. That vocabulary only
appears in UIML as the value of attributes in UIML. Thus UIML only needs to be standardized
once, and different constituencies of end users can define vocabularies that are suitable for
various toolkits independently of UIML. In addition to creating vocabularies for particular
toolkits (e.g., Java AWT), a vocabulary for generic classes of toolkits (e.g., mapping to any
graphical UI) could be devised. Or new vocabularies can be defined as new devices and UI
technologies are created in the future.

To illustrate, the interface implementor might write this in UIML:

<part name="Line" class="MenuItemOrIcon">

The name MenuItemOrIcon is a mnemonic because the implementor is thinking that this class of
parts could be rendered as a menu item or as an icon in two different presentations. But they
could have used any name in place of MenuItemOrIcon. In one presentation of the interface
using Java AWT, the style element may then map this to a java.awt.MenuItem as follows:

<style>
 <property part-class="MenuItemOrIcon"
 name="rendering">MenuItem<property/>
 ...
</style>

A UIML document also includes an element, called peers, that enumerates the mapping from
property values to specific tags or objects in the target platform:

<peers>
 <presentation name="Java-AWT">
 <component name="MenuItem" maps-to="java.awt.MenuItem">
 ...
 </presentation>
 ...
<peers>

UIML 2.0a Language Reference

UIT, Inc. Page 41 1/17/2000

To summarize, UIML uses three levels of names for interface parts and events. The first is
chosen by the UIML author. The second name is in the style element and maps the mnemonic to
an abstract widget name (e.g., MenuItem). The second level allows a mapping from one abstract
set of names (e.g., BigWindow) to multiple platforms (e.g., MFC or Java Swing) without
modifying the rest of the interface description. Finally, the third name in the peers element is
part of a toolkit-specific vocabulary and maps the abstract widget name to a name of a widget
from the target platform (e.g., java.awt.TextField).

7.1 The peers Element

DTD

<!ELEMENT peers (presentation|logic)*>
<!ATTLIST peers
 %SourceAttributes;>

Description
In UIML, all the device and toolkit information is isolated in the peers element. This information
is used by a UIML rendering engine to resolve all the names from the property, method, and
event elements into actual widgets, methods, and events.

Normally a UIML author does not write peer components, but simply includes existing ones like
this:

<peers>
 <presentation name="Java"
 source="http://uiml.org/toolkits/Java20Swing.ui"/>
 <presentation name="wml"
 source="http://uiml.org/toolkits/wml.ui"/>
 ...
 <logic name="Java"
 source="http://uiml.org/apps/CalendarApp.logic"/>
 <logic name="Scripts"
 source="http://uiml.org/apps/scripts/CalendarApp.logic"/>
</peers>

7.2 The presentation Element

DTD

<!ELEMENT presentation (component*)>
<!ATTLIST presentation
 %SourceAttributes;>

UIML 2.0a Language Reference

UIT, Inc. Page 42 1/17/2000

Description
The presentation element provides information about a single UI toolkit. It describes the
different widgets (that are used to render parts) and events (that are generated during the course
of application execution).

It is possible to have multiple UIML presentation elements for the same UI toolkit. UI designers
can create their own UI vocabulary and then map it to the underlying toolkit. See Section 7 for
more comments on this perspective.

The peers element assists in the creation of programs that generate renderers, so that renderers do
not have to be hand-crafted for each toolkit. It also provides the authoritative definition of the
vocabulary used in UIML for each toolkit.

An implementation of a rendering engine may omit reading the presentation element to reduce
the execution time of and mitigate the effect of network delays upon rendering time. Instead, the
engine might cache copies of the presentation files for the toolkits that it supports (e.g.,
Java20Swing.ui in the example above). Alternatively, the presentation element’s information
might be hard-wired into the rendering engine, so that the engine does not even have to spend
time reading and processing the information.

Example

The following example illustrates what goes into a presentation element. As stated earlier, a
UIML author normally does not write presentation elements.

<presentation name="JavaAWT">
 <component name="Button" maps-to="java.awt.Button">
 <attribute name="content">
 <method type="input" maps-to="getLabel"/>
 <method type="output" maps-to="setLabel"/>
 </attribute>

 <attribute name="color">
 <method type="input" maps-to="getColor"/>
 </attribute>
 </component>

 <component name="mouseOver" maps-to="java.awt.event.MouseOver"/>
</presentation>

UIML 2.0a Language Reference

UIT, Inc. Page 43 1/17/2000

7.3 The logic Element

DTD

<!ELEMENT logic (component*)>
<!ATTLIST logic
 %SourceAttributes;>

Description
The logic element describes how the UI interacts with the underlying logic that implements the
functionality manifested through the interface. The underlying logic might be implemented by
middleware in a three tier application, or it might be implemented by scripts in some scripting
language, or it might be implemented by a set of objects whose methods are invoked as the end
user interacts with the UI, or by some combination of these (e.g., to check for validity of data
entered by an end user into a UI and then object methods are called), or in other ways.

Thus, the logic element acts as the glue between a UI described in UIML and other code. It
describes the calling conventions for methods in application logic that the UI invokes. Examples
of such functions include objects in languages such as C++ or Java, CORBA objects, programs,
legacy systems, server-side scripts, databases, and scripts defined in various scripting languages.

Example

The following UIML fragment describes the calling conventions for a variety of functions in
external application logic and functions in scripts.

<logic>

 <component name="back1" maps-to="org.uiml.example.myClass">

 <method name="m1" maps-to="myfunction">
 <param name="p1"/>
 <param name="p2"/>
 </method>

 <method name="m2" maps-to="m2">
 <returns name="r1"/>
 </method>

 <method name="master" maps-to="m3">
 <param name="p3"/>
 <returns name="r2"/>
 </method>

 </component>

 <component name="back2" maps-to="org.uiml.example.myClass1">
 <method name="m3" maps-to="m9">
 <param name="p4"/>
 </method>

UIML 2.0a Language Reference

UIT, Inc. Page 44 1/17/2000

 </component>

 <component name="S1">

 <method name="m1" maps-to="Cube">
 <param name="i"/>
 <returns name="result"/>
 </method>

 <script type="application/ecmascript"><![CDATA[

 Cube(int i) {
 return i*i*i;
 }
]]></script>

 </component>

 <component name="S2" maps-to="http://somewhere/vb"/>
 <method name="m101" maps-to="f2">
 <param name="p5"/>
 </method>
 </component>

</logic>

7.4 Common Elements

7.4.1 The component Element

DTD

<!ELEMENT component (attribute|method)*>
<!ATTLIST component
 %SourceAttributes;
 maps-to CDATA #IMPLIED>

Description
The component element binds a name used in the rendering property of a part or an event
element elsewhere in the interface to a component that is part of the presentation toolkit. A
component can also act as a container for application methods (e.g., a class in an object oriented
languages). A component may contain attributes and methods.

The maps-to attribute specifies the name that is being bound. This name is used by the renderer
to locate the widget, event, or application class at runtime.

UIML 2.0a Language Reference

UIT, Inc. Page 45 1/17/2000

7.4.2 The attribute Element

DTD

<!ELEMENT attribute (method*)>
<!ATTLIST attribute
 name NMTOKEN #REQUIRED>

Description
The attribute element specifies the mapping between a style property and the associated methods
that assign or retrieve a value for the property.

Example

<peers>
 <presentation>
 <component name="button" maps-to="java.awt.Button">
 <attribute name="Color">
 <method type="input" maps-to="getColor"/>
 <method type="output" maps-to="setColor"/>
 </attribute>
 ...
 </component>
 </presentation>
</peers>

<interface>
 ...
 <style>
 <property name="Color" part-name="bElem">Blue</property>
 </style>
 ...
</interface>

7.4.3 The method Element

DTD

<!ENTITY % TypeOptions
 "type (input|output|inout|none) 'inout'">

<!ELEMENT method (param*, returns?, script?)>
<!ATTLIST method
 %SourceAttributes;
 maps-to CDATA #IMPLIED
 %TypeOptions;>

UIML 2.0a Language Reference

UIT, Inc. Page 46 1/17/2000

Description
The method element describes a method in the external application logic or presentation toolkit
in terms of its optional formal parameters and optional return value.

The maps-to attribute specifies the name that is being bound. The value of maps-to points the
name of an actual method that can be executed. The method can represent a toolkit method (if it
is inside a presentation element), an application method (if it is inside a logic element), or
scripting code (with scripting nested inside the method element).

A method can be any of four types: input, output, inout, and none. The input and output types
are usually associated with get and set methods for attributes. A method of type input is
expected to return a value that is then used to assign a value to the parent attribute. A method of
type output is expected to take one argument that is the value of the parent attribute. A method
of type inout can take any number of arguments and/or return a value. This is the default type
and what usually logic methods are. Finally, a method of type none usually takes no arguments
and does not return anything but does maintenance operations (e.g., initialization, refresh, etc.).

The method element supports three different execution models:
1. The method represents a remote (outside the renderer) executable code. This code executes

outside the sandbox of the renderer and is treated like a black box. The renderer will package
all the parameters, send them to the server executing the code (which can be on the same
machine or across the network), and wait for a reply. Here is an example:

<component name="Math" maps-to="myClass.Math.CommonRoutines">
 <method name="findMean" maps-to="calcMean">
 <param name="a"/>
 <param name="b"/>
 <returns name="result"/>
 </method>
</component>

2. The method represents a local script. This script is embedded inside the method and is
executed within the sandbox of the renderer. If the maps-to attribute for the component is
missing, this means that all the code is local. Here is an example:

<component name="Math">
 <method name="findMean" maps-to="calcMean">
 <param name="a"/>
 <param name="b"/>
 <returns name="result"/>
 <script type="text/javascript">
 <![CDATA[
 calcMean(int a, int b) {
 return (a+b)/2;
 }
]]>
 </script>
 </method>
</component>

UIML 2.0a Language Reference

UIT, Inc. Page 47 1/17/2000

3. The method represents a combination of the above. This is useful if you want to do some
error checking locally before calling a remote method or manipulate the result after it is
returned. The semantics of how to do this are under revision.

7.4.4 The param Element

DTD
See Section 6.7.7.

Description
Describes a single formal parameter of the function described by the parent method element.
Note that all parameters are character strings. It is up to some intermediary to convert
parameters from character strings to other data types (e.g., integer or Boolean) if required.

The order of param elements within the method element is significant. This order must
correspond to the order in which the parameters were originally declared in the external
application.

7.4.5 The returns Element

DTD

<!ELEMENT returns EMPTY>
<!ATTLIST returns
 name NMTOKEN #IMPLIED>

Description
The parent of a returns element is a method element. The method element describes some
function, say f. The returns element if present declares that f does indeed return a value, and the
returns element defines a name for the return value of f. All return values are character strings.

7.4.6 The script Element

DTD

<!ELEMENT script (#PCDATA)>
<!ATTLIST script
 %SourceAttributes;
 type NMTOKEN #IMPLIED>

Description
The script element contains a program written in the scripting language identified by the type
attribute (this is similar to the script element in HTML 4.0).

UIML 2.0a Language Reference

UIT, Inc. Page 48 1/17/2000

8 Reusable Interface Components
UIML templates enables interface implementors to design parts or to make their entire UI
reusable as a component in another UI. For example, many UIs for electronic commerce
applications include a credit-card entry form. If such a form is described in UIML as a template,
then it can be reused multiple times either within the same UI or across other UIs. This reduces
the amount of UIML code needed to develop a UI and also ensures a consistent presentation
across enterprise-wide UIs. End users tend to make fewer mistakes and are more efficient when
presented with familiar UIs.

8.1 The template Element

DTD

<!ENTITY % SourceModes "(append|cascade|replace) 'replace'">

<!ENTITY % SourceAttributes
 "name NMTOKEN #IMPLIED
 source CDATA #IMPLIED
 how %SourceModes; ">

<!ENTITY % SourceElements
 "(behavior|component|constant|content|interface|logic
 |part|peers|presentation|property|rule|script|structure|style)">

<!ELEMENT template %SourceElements;>
<!ATTLIST template
 name NMTOKEN #IMPLIED>

Description
The template element permits several handy shortcuts when writing UIML. It allows

• one fragment of UIML to be inserted in multiple places in a UIML document,
• one UIML document to include a UIML fragment from another document, and
• style and other elements to be cascaded, in a manner analogous to the CSS specification

[3].

Templates work as follows. Most elements (see SourceElements list) can contain the source
attribute; call such an element E. The source attribute names a template element (either within
the same document or in another document). The template named must contain an element of
the same type as the element E (i.e., have the same tag name). The source attribute causes the
body of the element inside the template to be combined with the body of E. The rules to control
how this combining is done are explained later in Section 8.2.

Simple Example Using the source Attribute

<uiml>
 <peers>

UIML 2.0a Language Reference

UIT, Inc. Page 49 1/17/2000

 <presentation name="java"
 source="http://uiml.org/toolkits/Java20AWT.ui#Java_AWT"
 how="replace"
 />
 </peers>
 ...
</uiml>

The presentation element box contains an source attribute that names a URL. The effect of this
is to insert as the body of the presentation element a fragment that is named by the URL. The
URL “http://uiml.org/toolkits/Java20AWT.ui” in turn contains the following:

<uiml>
 <template name="Java_AWT">
 <presentation>
 <component name="Frame" maps-to="java.awt.Frame">
 ...
 </component>
 <component .../>
 ...
 </presentation>
 <template>
</uiml>

Note that the “#Java_AWT” portion of the URL refers to the template element with a name
attribute of “Java_AWT”. In the case where only one template exist in the file, then this name
can be omitted. If the name is omitted and multiple templates exist, then the first one is used.

8.2 Rules for Templates
In the example of Section 8.1, the element containing the source attribute (E) has no body.
Therefore the body of the fragment is inserted as the child of E. However, it is also possible for
E to have a body. In this case, a set of rules must be specified on how to combine the bodies of
the two elements.

For example, consider this UIML file:

<interface>
 <structure>
 <part class="label" name="l1">
 ...
 </structure>

 <style source="file://phone.ui#model_508">
 <property name="position" part-name="label">2</property>
 </style>
 <interface>

Next suppose that file “phone.ui” contains the following:

 <template name="model_508">
 <style>

UIML 2.0a Language Reference

UIT, Inc. Page 50 1/17/2000

 <property name="font_style" part-name="label">bold</property>
 <property name="position" part-name="label">1</property>
 </style>
 <template>

The style element in the main document already has a body and both style elements have a
property named position, which one should be used?

A template element is like a separate branch on the UIML tree (think of a DOM tree [11]). A
template branch can be joined with the main UIML tree anywhere there is a similar branch (i.e.,
the first and only child of template must have the same tag name as the element on the UIML
tree where the joined is made). The interface implementor has three choices on how to combine
the template element with another element. The first choice is “replace.” All the children of the
element on the main tree that sources the template are deleted, and in their place all the children
of the template element are added (see Figure 1). The second choice is “append.” All the
children of the element on the main tree that sources the template are kept, and all the children of
the template element are added then to the list too (see Figure 2). In both cases, the names of the
children of the template element are appended with the name given to the template before they
are added (e.g., name = “templateName.originalName”). The last choice is “cascade.” This is
similar to what happens in CSS. The children from the template are added to the element on the
main tree. If there is a conflict (e.g., two elements with the same name), then the element on the
main tree is retained (see Figure 3).

part
“A”

part
“C1”

part
“C2”

part
“D1”

part
“B”

part
“C1”

part
“C3”

part
“D2”

part
“A”

part
“B.C1”

part
“B.D2”

part
“B.C3”

Figure 1: Part “A” sources part “B” using “replace”

part
“A”

part
“C1”

part
“C2”

part
“D1”

part
“B”

part
“C1”

part
“C3”

part
“D2”

part
“A”

part
“C1”

part
“C2”

part
“D1”

part
“B.C1”

part
“B.C3”

part
“B.D2”

Figure 2: Part “A” sources part “B” using “append”

UIML 2.0a Language Reference

UIT, Inc. Page 51 1/17/2000

part
“A”

part
“C1”

part
“C2”

part
“D1”

part
“B”

part
“C1”

part
“C3”

part
“D2”

part
“A”

part
“C1”

part
“C2”

part
“D1”

part
“C3”

Figure 3: Part “A” sources part “B” using “cascade”

Below are common usage examples of templates that demonstrate the different rules:

8.2.1 Combine Using Replace
Interface parts can be reused by placing them inside a template and then sourcing that template at
the appropriate places in the interface structure. The part that sources the template can also
include a default implementation of the part inside the template. If the template is for some
reason inaccessible (e.g., network problems), then the renderer can ignore the template and still
renderer the part. Using “replace” as the value for the how attribute, the UIML parser will delete
the default implementation and add the implementation from the template.

Example

With UIML, one could build a library of reusable interface components, and then include them
as needed in a new UIML documents. In the following UIML fragment, a dialog box in file
DialogBox.ui is inserted into the UIML document in place of the following part element. Note
that the dialog box can then be customized elsewhere in the UIML document by setting various
properties (including the content) of the dialog box.

<template name="DialogBox">
 <part name="TopLevel">
 <part name="CompanyLogo" class="ImageContainer"/>
 <part name="Message" class="Label"/>
 <part name="Accept" class="Button"/>
 </part>
</template>

...
<interface>
 <structure>
 ...
 <part name="FileNotFoundBox" class="DialogBox"
 source="#DialogBox.ui" how="replace">

 <!-- Default implementation -->

 </part>
 ...

UIML 2.0a Language Reference

UIT, Inc. Page 52 1/17/2000

 </structure>
 ...
</interface>

8.2.2 Combine Using Append
Runtime behavior varies significantly from device to device. However, on the same device
different platforms are sharing the same behavior. For example, both MS-Windows and X-
Windows have events like mouse movement and button clicks. It is therefore convenient, when
describing the behavior of similar platforms, to specify the common behavior (rules) in a
template and source the template in the behavior for each platform. Using “append” as the value
for the how attribute, the UIML parser will append the list of common behavior rules to the
behavior in the main document.

Example

The following example shows how to reuse behavior rules:

<template name="GUI_Rules">
 <behavior>
 <rule> <!-- Mouse Movement --> </rule>
 <rule> <!-- Button Click --> </rule>
 </behavior>
</template>

<interface>
 ...
 <behavior name="X-Windows" source="#GUI_Rules" how="append">
 <rule> <!-- Middle Mouse Click --> </rule>
 </behavior>

 <behavior name="MS-Windows" source="#GUI_Rules" how="append">
 <rule> <!-- Window Closing --> </rule>
 </behavior>
</interface>

8.2.3 Combine Using Cascade
Style is what dictates how an interface looks and feels. Many companies want the interfaces to
their applications to look the same when presented on the same platform. For example, they
want all the “about” dialogs to show their company logo and copyright statement, they want the
name of their company to be in a special font and color everywhere it appears, they want the
menus to have a special structure (e.g., File, Edit, View, etc…), etc. UIML allows all these and
more. All these common style information can be specified in a template and then included in all
the interface descriptions. Using “cascade” as the value for the how attribute, will include the
common style information but will also give the ability to customize certain properties. Any
local property with the same name will override the property in the template.

UIML 2.0a Language Reference

UIT, Inc. Page 53 1/17/2000

Example

The following example demonstrates how to use common style properties and customize them:

<template name="Graphical">
 <style>
 <property name="TitleColor" part-class="ADialog">Blue</property>
 <property name="TitleFont" part-class="ADialog">Arial</property>
 <property name="rendering" part-class="ADialog">Dialog</property>
 <property name="content" part-class="ADialog">About: UIT</property>
 </behavior>
</template>

<interface>
 ...
 <style name="MyStyle" source="#Graphical" how="cascade">
 <property name="content" part-name="myAbout"
 >Universal Interface Technologies</property>
 </style>
</interface>

8.3 Multiple Inclusions
Elements inside a template can source elements inside other templates. This allows a
hierarchical inclusion of UIML templates. This is useful when describing the peer components
to a language with an object hierarchy. For example, the Java AWT classes are organized in a
hierarchy with each child class inheriting the parent class attribute (thus avoiding redefining the
attributes for each class). For example the “Window” inherits its layout attributes from
“Container,” which inherits its formatting attributes from “Component.”

It is an error if a template indirectly sources itself. Note that a template cannot directly source
itself. The following example demonstrates how a template can indirectly source itself:

<template name="A">
 <part name="a1" source="#B"/>
</template>

<template name="B">
 <part name="b1" source="#C"/>
</template>

<template name="C">
 <part name="c1" source="#A"/>
</template>

8.4 The export Attribute

DTD

UIML 2.0a Language Reference

UIT, Inc. Page 54 1/17/2000

<!ENTITY % ExportOptions
 "export (hidden|optional|required) 'optional'">

Description
By default all elements that appear inside a template element are visible (can be accessed) from
the elements at the location it is included and their data can be optionally modified. UIML
allows the encapsulation of what is inside a template by controlling what is visible and what is
not with the export attribute. Any element inside the template with the export attribute set to
“hidden” is not visible and thus generates an error if another element outside the template tries to
modify it. Also, any element with the export attribute set to “required” must be assigned a value
before the template can be rendered.

Example
In the following template, a message box has three parts. It required that the content of one part
be assigned a value but hides the other two parts. Now, assume that this template is rendered as
a dialog window, with a logo image, a label, and an “Ok” button. The UI that sources this
template must provide the content for the label (and thus display a custom message), but cannot
modify the logo or the “Ok” button.

<template name="MyDialog">
 <part name="TopLevel">
 <part name="MyLogo" export="hidden"/>
 <part name="MyMessage"/>
 <property name="content" export="required"/>
 </part>
 <part name="Ok" export="hidden"/>
 </part>
</template>

UIML 2.0a Language Reference

UIT, Inc. Page 55 1/17/2000

9 Alternative Organizations of a UIML document
Until now, UIML documents shown have followed a rigid format: appearing in the uiml element
is first the optional head element, followed by the peers element, and then the interface element.
Alternative document organizations are possible:

��The content, style, and behavior elements can be embedded within the part element. This
makes it easier to write UIML, because all information about an interface part is
centralized where the part is defined.

��The UIML document can be split into multiple documents, with different documents
loaded only when an event triggers loading.

��A renderer can start rendering before an entire UIML document is received to reduce
latency for an end user in large UIML documents.

The DTD in the Appendix A permits these combinations. Refer to the DTD for precise
information on what organizations are legal, and to the examples document [2] for some
illustrations of alternate organizations.

Often it is desirable to put UIML fragments into separate files, and then include one file within
another. This can be accomplished in two ways in UIML:

9.1 Normal XML Mechanism
XML allows file inclusion as illustrated below:

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml version="1.0"?>
<!DOCTYPE uiml PUBLIC
 "-//UIT//DTD UIML 2.0a Draft//EN"
 "http://uiml.org/dtds/UIML2_0a.dtd">
<!ENTITY peers SYSTEM "http://uiml.org/peers.ui">
<!ENTITY parts SYSTEM "parts.ui">
<!ENTITY style SYSTEM "style.ui">
<!ENTITY content SYSTEM "content.ui">
<!ENTITY behavior SYSTEM "behavior.ui">

<uiml>
 &peers;
 <interface>&parts;&style;&content;&behavior;</interface>
</uiml>

9.2 UIML Template Mechanism
Using the template element a UIML document can be broken down into multiple pieces (as
explained in Section 8.1). The major difference between the normal XML mechanism and
UIML templates is that templates provide more control on what information is visible to the
main document (see Section 8.4). For example, a template may encapsulate the implementation
of a dialog box and export only the content property of the input widget. Also, a smart renderer

UIML 2.0a Language Reference

UIT, Inc. Page 56 1/17/2000

may delay the loading and parsing of templates until that part of the code is reached, whereas in
the XML mechanism all the inclusions must be done during parsing.

UIML 2.0a Language Reference

UIT, Inc. Page 57 1/17/2000

References

[1] Extensible Markup Language (XML), W3C Proposed Recommendation 10-February-
1998, REC-xml-19980210, T. Bray, et al, February 10, 1998,
http://www.w3.org/TR/REC-xml.

[2] Examples of User Interface Markup Language (UIML) for Version 17Jan00,
http://www.uiml.org/specs/UIML17Jan00SpecExamples.pdf.

[3] B. Bos, H. W. Lie, C. Lilley, I. Jacobs, Cascading Style Sheets, level 2, CSS2
Specification. W3C Recommendation 12-May-1998, http://www.w3.org/TR/REC-
CSS2/.

[4] Marc Abrams, Constantinos Phanouriou, Alan L. Batongbacal, Stephen M. Williams,
Jonathan E. Shuster, “UIML: An Appliance-Independent XML User
Interface Language,” 8th International World Wide Web Conference, Toronto, May
1999, http://www8.org/w8-papers/5b-hypertext-media/uiml/uiml.html. Also appeared
in Computer Networks, Vol. 31, pp. 1695-1708.

[5] UIML1.0 specification, http://www.uiml.org/docs/UIML1-spec.html, 1997.
[6] J. Clark and S. Deach, eds, Extensible Style Language (XSL), W3C Proposed

Recommendation, 12 January 2000. http://www.w3.org/TR/xsl.
[7] J. Clark, XSL Transformations (XSLT), W3C Recommendation 16 November 1999,

http://www.w3.org/TR/xslt.
[8] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,

http://www.ietf.org/rfc/rfc2119.txt, March 1997.
[9] Wireless Markup Language (WML), Wireless Application Protocol, June 16, 1999,

http://www.wapforum.org/
[10] Voice Extensible Markup Language (VoiceXML), VoiceXML Forum, August 17,

1999, http://www.voicexmlforum.org/
[11] Document Object Model (DOM), W3C, http://www.w3.org/

UIML 2.0a Language Reference

UIT, Inc. Page 58 1/17/2000

Appendix A. UIML 2.0a Document Type Definition

<?xml version="1.0" encoding="ISO-8859-1"?>

<!--
 User Interface Markup Language (UIML)
 =====================================

 Developed by:

 Universal Interface Technologies, Inc.

 Authors:

 Constantinos Phanouriou (phanouri@universalit.com)
 Alan L. Batongbacal
 Marc Abrams (abrams@universalit.com)

 Usage:

 <?xml version="1.0"?>
 <!DOCTYPE uiml PUBLIC
 "-//UIT//DTD UIML 2.0a Draft//EN"
 "http://uiml.org/dtds/UIML2_0a.dtd">

 <uiml>
 <head> ... </head>
 <peers> ... </peers>
 <template> ... </template>
 <interface> ... </interface>
 </uiml>

 Description:

 This DTD corresponds to the UIML 2.0a specification,
 which may be found at the following URL:

 http://www.uiml.org/docs/uiml20

 Change History:
 16 Jan 2000 - M Abrams (abrams@uiml.org)
 - Changed "href" attribute back to old name, "source"
 - Changed "task" tag back to old name, "call"
 08 Oct 1999 - C Phanouriou (phanouri@universalit.com)
 - Updated DTD to UIML spec version "2.0a"
 - Major changes and tag renaming
 - Added support for templates and peer components
 31 Jul 1999 - A Batongbacal (alanlb@universalit.com)
 - Updated DTD to UIML spec version "2.0"
 24 Jul 1999 - M Abrams (abrams@uiml.org)
 - updated to revised language
 15 Jul 1999 - C Phanouriou (phanouri@universalit.com)
 - first draft
-->

<!-- ==================== Entities ======================= -->

<!-- Template related attributes -->

<!ENTITY % SourceModes "(append|cascade|replace) 'replace'">

UIML 2.0a Language Reference

UIT, Inc. Page 59 1/17/2000

<!-- Export options for elements inside a template -->
<!ENTITY % ExportOptions
 "export (hidden|optional|required) 'optional'">

<!ENTITY % SourceAttributes
 "name NMTOKEN #IMPLIED
 source CDATA #IMPLIED
 how %SourceModes;
 %ExportOptions;">

<!-- Elements that can be inside a template -->
<!ENTITY % SourceElements
 "(behavior|component|constant|content|interface|logic
 |part|peers|presentation|property|rule|script|structure|style)">

<!-- Type options for methods -->
<!ENTITY % TypeOptions
 "type (input|output|inout|none) 'inout'">

<!-- ==================== Content Models ======================= -->

<!--
 'uiml' is the root element of a UIML document.
-->

<!ELEMENT uiml (head?, peers?, template*, interface?)>

<!--
 The 'head' element is meant to contain metadata about the UIML
 document. You can specify metadata using the meta tag,
 this is similar to the head/meta from HTML.
-->

<!ELEMENT head (meta)*>
<!ELEMENT meta EMPTY>
<!ATTLIST meta
 name NMTOKEN #REQUIRED
 content CDATA #REQUIRED>

<!--
 The 'peers' element contains information that defines
 how a UIML interface component is mapped to the target platform's
 rendering technology and to the backend logic.
-->

<!ELEMENT peers (presentation|logic)*>
<!ATTLIST peers
 %SourceAttributes;>

<!--
 The 'template' element allows reuse of UIML elements.
 When an element appears inside a template element it can
 sourced by another element with the same tag.
-->

<!ELEMENT template %SourceElements;>
<!ATTLIST template
 name NMTOKEN #IMPLIED>

<!--
 The 'interface' element describes a user interface in terms of

UIML 2.0a Language Reference

UIT, Inc. Page 60 1/17/2000

 presentation cues, component structure and behavior specifications.
-->

<!ELEMENT interface (structure|style|content|behavior)*>
<!ATTLIST interface
 %SourceAttributes;>

<!-- Peer related elements -->

<!--
 The 'presentation' element specifies the mapping between
 abstract interface parts and platform dependent widgets.
-->

<!ELEMENT presentation (component*)>
<!ATTLIST presentation
 %SourceAttributes;>

<!--
 The 'logic' element specifies the connection between the interface
 and the backend application, including support for scripting.
-->

<!ELEMENT logic (component*)>
<!ATTLIST logic
 %SourceAttributes;>

<!--
 The 'component' element represents components either in the backend
 (e.g., a class in an object oriented language) or components from
 a renderable toolkit (e.g., a widget)
-->
<!ELEMENT component (attribute|method)*>
<!ATTLIST component
 %SourceAttributes;
 maps-to CDATA #IMPLIED>

<!--
 The 'attribute' element
-->
<!ELEMENT attribute (method*)>
<!ATTLIST attribute
 name NMTOKEN #REQUIRED>

<!--

-->
<!ELEMENT method (param*, returns?, script?)>
<!ATTLIST method
 %SourceAttributes;
 maps-to CDATA #IMPLIED
 %TypeOptions;>

<!--
 'Param' denotes a single formal or actual parameter to a function.
-->

<!ELEMENT param EMPTY>
<!ATTLIST param
 name NMTOKEN #IMPLIED>

<!--

UIML 2.0a Language Reference

UIT, Inc. Page 61 1/17/2000

 The 'returns' element marks the return value of a callable function.
-->

<!ELEMENT returns EMPTY>
<!ATTLIST returns
 name NMTOKEN #IMPLIED>

<!--
 The 'script' element contains data passed to an embedded scripting
 engine. The type specifies the scripting language (see HTML4.0)
-->

<!ELEMENT script (#PCDATA)>
<!ATTLIST script
 %SourceAttributes;
 type NMTOKEN #IMPLIED>

<!-- Interface related elements -->

<!--
 The 'structure' element describes the initial logical relationships
 between the components (i.e., the "part"s) that comprise the user
 interface.
-->

<!ELEMENT structure (part*)>
<!ATTLIST structure
 %SourceAttributes;>

<!--
 A 'part' element describes a conceptually complete component of the
 user interface.
-->

<!ELEMENT part (style?, content?, behavior?, part*)>
<!ATTLIST part
 %SourceAttributes;
 class NMTOKEN #IMPLIED>

<!--
 A 'style' element is composed of one or more 'property' elements,
 each of which specifies how a particular aspect of an interface
 component's presentation is to be presented.
-->

<!ELEMENT style (property*)>
<!ATTLIST style
 %SourceAttributes;>

<!--
 A 'property' element is typically used to set a specified
 property for some interface component (or alternatively,
 a class of interface components), using the element's
 character data content as the value. If the 'operation'
 attribute is given as "get", the element is equivalent to
 a property-get operation, the value of which may be "returned"
 as the content for an enclosing 'property' element.
-->

<!ELEMENT property (#PCDATA|constant|property|reference|call)*>

UIML 2.0a Language Reference

UIT, Inc. Page 62 1/17/2000

<!ATTLIST property
 %SourceAttributes;
 part-name NMTOKEN #IMPLIED
 part-class NMTOKEN #IMPLIED
 event-name NMTOKEN #IMPLIED
 event-class NMTOKEN #IMPLIED
 call-name NMTOKEN #IMPLIED
 call-class NMTOKEN #IMPLIED>

<!--
 A 'reference' may be thought of as a property-get operation,
 where the "property" to be read is a 'constant' element defined
 in the UIML document's 'content' section.
-->

<!ELEMENT reference EMPTY>
<!ATTLIST reference
 constant-name NMTOKEN #REQUIRED>

<!--
 The 'content' element is composed of one or more 'constant'
 elements, each of which specifies some fixed value.
-->

<!ELEMENT content (constant*)>
<!ATTLIST content
 %SourceAttributes;>

<!--
 'Constant' elements may be hierarchically structured.
-->

<!ELEMENT constant (#PCDATA|constant)*>
<!ATTLIST constant
 %SourceAttributes;>

<!--
 The 'behavior' element gives one or more "rule"s that
 specifies what 'action' is to be taken whenever an associated
 'condition' becomes TRUE.
-->

<!ELEMENT behavior (rule*)>
<!ATTLIST behavior
 %SourceAttributes;>

<!ELEMENT rule (condition,action)?>
<!ATTLIST rule
 %SourceAttributes;>

<!--
 At the moment, "rule"s may be associated with two types of
 conditions: (1) whenever some expression is equal to some other
 expression; and (2) whenever some event is triggered and caught.
-->

<!ELEMENT condition (equal|event)>
<!ELEMENT equal (event,(constant|property|reference))>

<!ELEMENT action ((property|call)*, event?)>

UIML 2.0a Language Reference

UIT, Inc. Page 63 1/17/2000

<!ELEMENT call (param*)>
<!ATTLIST call
 name NMTOKEN #IMPLIED
 class NMTOKEN #IMPLIED>

<!ELEMENT event EMPTY>
<!ATTLIST event
 part-name NMTOKEN #IMPLIED
 part-class NMTOKEN #IMPLIED
 name NMTOKEN #IMPLIED
 class NMTOKEN #IMPLIED>

<!-- Syntax under revision -->
<!ELEMENT system EMPTY>

UIML 2.0a Language Reference

UIT, Inc. Page 64 1/17/2000

Appendix B. Behavior Rule Selection Algorithm
The behavior element contains one or more rule elements. Sometimes the condition for more
than one rule may be satisfied at the same time. A UIML rendering engine must render UIML in
such a way that rule elements are selected for execution according to the algorithm below. For
each rule element selected, the elements inside the action element are executed sequentially.

// Scan each rule element sequentially
// (as they appear in the UIML file)
foreach (rule inside behavior) do

 // Evaluate the condition of the rule
 if eval(rule . condition) == TRUE then

 // A condition is found that evaluates to true
 // Scan action elements sequentially
 foreach (element inside action) do

 // If the element is a property
 if (element instanceof property) then
 do property assignment

 // If the element is a method
 else if (element instanceof method) then
 do method call

 // If the element is an event
 // This must be the last element in the action
 else if (element instanceof method) then
 do event firing
 RETURN

 end foreach

 // End when a rule is found and its actions are executed
 RETURN
 endif
end foreach

